Ruthenium-modified porous NiCo2O4 nanosheets boost overall water splitting in alkaline solution
-
* Corresponding author.
E-mail address: xipx@lzu.edu.cn (P. Xi).
Citation:
Rui Yang, Xuezhao Shi, Yanyan Wang, Jing Jin, Hanwen Liu, Jie Yin, Yong-Qing Zhao, Pinxian Xi. Ruthenium-modified porous NiCo2O4 nanosheets boost overall water splitting in alkaline solution[J]. Chinese Chemical Letters,
;2022, 33(11): 4930-4935.
doi:
10.1016/j.cclet.2021.12.058
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998.
doi: 10.1126/science.aad4998
I. Roger, M.A. Shipman, M.D. Symes, et al., Nat. Rev. Chem. 1 (2017) 0003.
doi: 10.1038/s41570-016-0003
H. Sun, L. Chen, Y. Lian, et al., Adv. Mater. 32 (2020) 2006784.
doi: 10.1002/adma.202006784
J. Cao, C. Lei, J. Yang, et al., J. Mater. Chem. A 6 (2018) 18877.
doi: 10.1039/C8TA08337A
K. Wang, Wang X, Li Z, et al., Nano Energy 77 (2020) 105162.
doi: 10.1016/j.nanoen.2020.105162
L. An, J. Feng, Y. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1805298.
doi: 10.1002/adfm.201805298
L. Wang, Z. Li, K. Wang, et al., Nano Energy 74 (2020) 104850.
doi: 10.1016/j.nanoen.2020.104850
C. Lei, S. Lyu, J. Si, et al., ChemCatChem 11 (2019) 5855–5874.
doi: 10.1002/cctc.201901707
F. Cheng, L. Wang, H. Wang, et al., Nano Energy 71 (2020) 104621.
doi: 10.1016/j.nanoen.2020.104621
C. Liu, J. Qian, Y. Ye, et al., Nat. Catal. 4 (2021) 36–45.
doi: 10.1038/s41929-020-00550-5
S.L. Zhang, B.Y. Guan, X.F. Lu, et al., Adv. Mater. 32 (2020) 2002235.
doi: 10.1002/adma.202002235
T. Wu, S. Sheng, J. Song, et al., Nat Catal. 2 (2019) 763–772.
doi: 10.1038/s41929-019-0325-4
J. Kim, H. Jung, S.M. Jung, et al., J. Am. Chem. Soc. 143 (2021) 1399–1408.
doi: 10.1021/jacs.0c10661
Q. Zhao, Z. Yan, C. Chen, et al., Chem. Rev. 117 (2017) 10121–10211.
doi: 10.1021/acs.chemrev.7b00051
J. Li, D. Chu, H. Dong, et al., J. Am. Chem. Soc. 142 (2020) 50–54.
doi: 10.1021/jacs.9b10882
J. Bao, X. Zhang, B. Fan, et al., Angew. Chem. Int. Ed. 54 (2015) 7399–7404.
doi: 10.1002/anie.201502226
Y. Sun, H. Liao, J. Wang, et al., Nat Catal. 3 (2020) 554–563.
doi: 10.1038/s41929-020-0465-6
Y. Duan, J.Y. Lee, S. Xi, et al., Angew. Chem., Int. Ed. 60 (2021) 7418–7425.
doi: 10.1002/anie.202015060
Y. Wen, P. Chen, L. Wang, et al., J. Am. Chem. Soc. 143 (2021) 6482–6490.
doi: 10.1021/jacs.1c00384
J. Yin, J. Jin, M. Lu, et al., J. Am. Chem. Soc. 142 (2020) 18378–18386.
doi: 10.1021/jacs.0c05050
R. Yang, L. An, Y. Zhang, et al., ChemCatChem 11 (2019) 6002–6007.
doi: 10.1002/cctc.201901634
J. Yang, B. Chen, X. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 9495–9500.
doi: 10.1002/anie.201804854
X. Wang, Y. Zheng, W. Sheng, et al., Mater. Today 36 (2020) 125–138.
doi: 10.1016/j.mattod.2019.12.003
X. Liu, F. Liu, J. Yu, et al., Adv. Sci. 7 (2020) 2001526.
doi: 10.1002/advs.202001526
S.Y. Bae, J. Mahmood, I.Y. Jeon, et al., Nanoscale Horiz. 5 (2020) 43–56.
doi: 10.1039/C9NH00485H
J. Su, Y. Yang, G. Xia, et al., Nat. Commun. 8 (2017) 14969.
doi: 10.1038/ncomms14969
C. Dong, X. Zhang, J. Xu, et al., Small 16 (2020) 1905328.
doi: 10.1002/smll.201905328
C. Wang, L. Qin, Angew. Chem. Int. Ed. 59 (2020) 17219–17224.
doi: 10.1002/anie.202005436
S. Jiang, R. Zhang, H. Liu, et al., J. Am. Chem. Soc. 142 (2020) 6461–6466.
doi: 10.1021/jacs.9b13915
Q. Lu, Y. Yu, Q. Ma, et al., Adv. Mater. 28 (2016) 1917–1933.
doi: 10.1002/adma.201503270
S.H. Ye, Z.X. Shi, J.X. Feng, et al., Angew. Chem. Int. Ed. 57 (2018) 2672–2676.
doi: 10.1002/anie.201712549
J. Yin, J. Jin, H. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 18676–18682.
doi: 10.1002/anie.201911470
Y. Gu, A. Wu, Y. Jiao, et al., Angew. Chem. Int. Ed. 60 (2021) 6673–6681.
doi: 10.1002/anie.202016102
J. Yin, J. Jin, H. Liu, et al., Adv. Mater. 32 (2020) 2001651.
doi: 10.1002/adma.202001651
T.X. Nguyen, Y.C. Liao, C.C. Lin, et al., Adv. Funct. Mater. 31 (2021) 2101632.
doi: 10.1002/adfm.202101632
T. Zhao, X. Shen, Y. Wang, et al., Adv. Funct. Mater. 31 (2021) 2100614.
doi: 10.1002/adfm.202100614
J. Gao, C.Q. Xu, S.F. Hung, et al., J. Am. Chem. Soc. 141 (2019) 3014–3023.
doi: 10.1021/jacs.8b11456
D.J. Morgan, Surface Interf. Anal. 47 (2015) 1072–1079.
doi: 10.1002/sia.5852
J. Yang, C. Wang, H. Ju, et al., Adv. Funct. Mater. 27 (2017) 1703864.
doi: 10.1002/adfm.201703864
Y. Duan, Z.Y. Yu, S.J. Hu, et al., Angew. Chem. Int. Ed. 58 (2019) 15772–15777.
doi: 10.1002/anie.201909939
F. Lei, Y. Sun, K. Liu, et al., J. Am. Chem. Soc. 136 (2014) 6826–6829.
doi: 10.1021/ja501866r
Y. Li, M. Wen, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 910–916.
doi: 10.1002/anie.202010156
T. Ling, D.Y. Yan, H. Wang, et al., Nat. Commun. 8 (2017) 1509.
doi: 10.1038/s41467-017-01872-y
J. Deng, H. Li, S. Wang, et al., Nat. Commun. 8 (2017) 14430.
doi: 10.1038/ncomms14430
X. Ren, C. Wei, Y. Sun, et al., Adv. Mater. 32 (2020) 2001292.
doi: 10.1002/adma.202001292
L. Zhang, W. Cai, N. Bao, et al., Adv. Mater. 33 (2021) 2100745.
doi: 10.1002/adma.202100745
Y. Shi, J. Wang, C. Wang, et al., J. Am. Chem. Soc. 137 (2015) 7365–7370.
doi: 10.1021/jacs.5b01732
Y. Guo, Y. Tong, P. Chen, et al., Adv. Mater. 27 (2015) 5989–5994.
doi: 10.1002/adma.201502024
Tianli Hui , Tao Zheng , Xiaoluo Cheng , Tonghui Li , Rui Zhang , Xianghai Meng , Haiyan Liu , Zhichang Liu , Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Jinshu Huang , Zhuochun Huang , Tengyu Liu , Yu Wen , Jili Yuan , Song Yang , Hu Li . Modulating single-atom Co and oxygen vacancy coupled motif for selective photodegradation of glyphosate wastewater to circumvent toxicant residue. Chinese Chemical Letters, 2025, 36(5): 110179-. doi: 10.1016/j.cclet.2024.110179
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Xinxin Zhang , Zhijian Liang , Xu Zhang , Qian Guo , Ying Xie , Lei Wang , Honggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Yunxia Liu , Guandong Wu , Lin Li , Yiming Niu , Bingsen Zhang , Botao Qiao , Junhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608
Yanyu Jin , Wenzhe Si , Xing Yuan , Hongjun Cheng , Bin Zhou , Li Cai , Yu Wang , Qibao Wang , Junhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260
Zuyou Song , Yong Jiang , Qiao Gou , Yini Mao , Yimin Jiang , Wei Shen , Ming Li , Rongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793
Shuyuan Pan , Zehui Yang , Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373
Kun Wang , Jiaxuan Qiu , Zefei Wu , Yang Liu , Yongqi Liu , Xiangpeng Chen , Bao Zang , Jianmei Chen , Yunchao Lei , Longlu Wang , Qiang Zhao . Wafer-level GaN-based nanowires photocatalyst for water splitting. Chinese Chemical Letters, 2025, 36(3): 109993-. doi: 10.1016/j.cclet.2024.109993
Ji Chen , Yifan Zhao , Shuwen Zhao , Hua Zhang , Youyu Long , Lingfeng Yang , Min Xi , Zitao Ni , Yao Zhou , Anran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375