Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides
-
* Corresponding author.
E-mail address: lingling.chu1@dhu.edu.cn (L. Chu).
Citation: Yubei Dai, Fang Wang, Shengqing Zhu, Lingling Chu. Selective Ni-catalyzed cross-electrophile coupling of alkynes, fluoroalkyl halides, and vinyl halides[J]. Chinese Chemical Letters, ;2022, 33(8): 4074-4078. doi: 10.1016/j.cclet.2021.12.050
P. Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.
K. Müller, C. Faeh, F. Diederich, Science 317 (2007) 1881–1886.
doi: 10.1126/science.1131943
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
doi: 10.1039/B610213C
T. Furuya, A.S. Kamlet, T. Ritter, Nature 473 (2011) 470–477.
doi: 10.1038/nature10108
O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475–4521.
doi: 10.1021/cr1004293
T. Besset, C. Schneider, D. Cahard, Angew. Chem. Int. Ed. 51 (2012) 5048–5050.
doi: 10.1002/anie.201201012
M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612–633.
doi: 10.1021/cr500366b
Z. Feng, Y.L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264–2278.
doi: 10.1021/acs.accounts.8b00230
J.B.I. Sap, C.F. Meyer, N.J.W. Straathof, et al., Chem. Soc. Rev. 50 (2021) 8214–8247.
doi: 10.1039/D1CS00360G
L. Chu, F.L. Qing, Acc. Chem. Res. 47 (2014) 1513–1522.
doi: 10.1021/ar4003202
M.C. Belhomme, T. Besset, T. Poisson, X. Pannecoucke, Chem. Eur. J. 21 (2015) 12836–12865.
doi: 10.1002/chem.201501475
T. Chatterjee, N. Iqbal, Y. You, E.J. Cho, Acc. Chem. Res. 49 (2016) 2284–2294.
doi: 10.1021/acs.accounts.6b00248
X. Wang, J. Lei, Y. Liu, et al., Org. Chem. Front. 8 (2021) 2079–2109.
doi: 10.1039/D0QO01629B
P.S. Fier, J.F. Hartwig, J. Am. Chem. Soc. 134 (2012) 5524–5527.
doi: 10.1021/ja301013h
G.K.S. Prakash, S.K. Ganesh, J.P. Jones, et al., Angew. Chem. Int. Ed. 51 (2012) 12090–12094.
doi: 10.1002/anie.201205850
N. Surapanich, C. Kuhakarn, M. Pohmakotr, V. Reutrakul, Eur. J. Org. Chem. (2012) 5943–5952.
doi: 10.1002/ejoc.201200613
D. Chang, Y. Gu, Q. Shen, Chem. Eur. J. 21 (2015) 6074–6078.
doi: 10.1002/chem.201500551
Z. Feng, Q. Min, H. Zhao, J. Gu, X. Zhang, Angew. Chem. Int. Ed. 54 (2015) 1270–1274.
doi: 10.1002/anie.201409617
C. Wu, Y. Huang, Z. Zhang, Z. Weng, Asian J. Org. Chem. 5 (2016) 1406–1410.
doi: 10.1002/ajoc.201600348
X. Wang, S. Zhao, J. Liu, et al., Org. Lett. 19 (2017) 4187–4190.
doi: 10.1021/acs.orglett.7b01712
J. Mestre, A. Lishchynskyi, S. Castillón, O. Boutureira, J. Org. Chem. 83 (2018) 8150–8160.
doi: 10.1021/acs.joc.8b00927
Y.T. He, Q. Wang, L.H. Li, et al., Org. Lett. 17 (2015) 5188–5191.
doi: 10.1021/acs.orglett.5b02512
Z. Li, A.G. Dominguez, C. Nevado, J. Am. Chem. Soc. 137 (2015) 11610–11613.
doi: 10.1021/jacs.5b07432
S. Domański, W. Chaładaj, ACS Catal. 6 (2016) 3452–3456.
doi: 10.1021/acscatal.6b00777
Y.T. He, L.H. Li, Q. Wang, W.S. Wu, Y.M. Liang, Org. Lett. 18 (2016) 5158–5161.
doi: 10.1021/acs.orglett.6b02627
Q. Wang, Y.T. He, J.H. Zhao, et al., Org. Lett. 18 (2016) 2664–2667.
doi: 10.1021/acs.orglett.6b01038
X. Qi, H.J. Ai, C.X. Cai, et al., Eur. J. Org. Chem. (2017) 2940–2943.
doi: 10.1002/ejoc.201700642
Q. Wang, L. Zheng, Y.T. He, Y.M. Liang, Chem. Commun. 53 (2017) 2814–2817.
doi: 10.1039/C7CC00259A
W. Guo, H. Zhao, Z. Luo, S. Zhang, X. Zhang, ACS Catal. 9 (2019) 38–43.
doi: 10.1021/acscatal.8b02842
M. Israr, H. Xiong, Y. Li, H. Bao, Org. Lett. 21 (2019) 7078–7083.
doi: 10.1021/acs.orglett.9b02648
N.S. Upadhyay, W. Chaładaj, Adv. Synth. Catal. 362 (2020) 493–499.
doi: 10.1002/adsc.201901027
P. Zhang, C. Wang, M. Cui, et al., Org. Lett. 22 (2020) 1149–1154.
doi: 10.1021/acs.orglett.9b04681
G. Beata, C. Wojciech, ACS Catal. 11 (2021) 6547–6555.
doi: 10.1021/acscatal.1c00671
P. Wu, C. Zheng, X. Wang, J. Wu, F. Wu, Eur. J. Org. Chem. (2021) 1420–1423.
R. Chinchilla, C. Najera, Chem. Rev. 114 (2014) 1783–1826.
doi: 10.1021/cr400133p
T. Besset, T. Poisson, X. Pannecoucke, Eur. J. Org. Chem. (2015) 2765–2789.
doi: 10.1002/ejoc.201403507
R. Dorel, A.M. Echavarren, Chem. Rev. 115 (2015) 9028–9072.
doi: 10.1021/cr500691k
J. Derosa, V.T. Tran, V.A. Van Der Puyl, K.M. Engle, Aldrichim. Acta 51 (2018) 21–32.
W. Liu, W. Kong, Org. Chem. Front. 7 (2020) 3941–3955.
doi: 10.1039/D0QO01097A
L. Xu, F. Wang, F. Chen, S. Zhu, L. Chu, Chin. J. Org. Chem. 42 (2022) 1–15.
doi: 10.6023/cjoc202109002
S. Zhu, X. Zhao, H. Li, L. Chu, Chem. Soc. Rev. 50 (2021) 10836–10856.
doi: 10.1039/D1CS00399B
D.A. Everson, D.J. Weix, J. Org. Chem. 79 (2014) 4793–4798.
doi: 10.1021/jo500507s
C.E.I. Knappke, S. Grupe, D. Gärtner, et al., Chem. Eur. J. 20 (2014) 6828–6842.
doi: 10.1002/chem.201402302
D.J. Weix, Acc. Chem. Res. 48 (2015) 1767–1775.
doi: 10.1021/acs.accounts.5b00057
J. Liu, Y. Ye, J.L. Sessler, H. Gong, Acc. Chem. Res. 53 (2020) 1833–1845.
doi: 10.1021/acs.accounts.0c00291
K.E. Poremba, S.E. Dibrell, S.E. Reisman, ACS Catal. 10 (2020) 8237–8246.
doi: 10.1021/acscatal.0c01842
J. Derosa, O. Apolinar, T. Kang, V.T. Tran, K.M. Engle, Chem. Sci. 11 (2020) 4287–4296.
doi: 10.1039/C9SC06006E
J. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 53 (2020) 906–919.
doi: 10.1021/acs.accounts.0c00032
Y. Luo, C. Xu, X. Zhang, Chin. J. Chem. 38 (2020) 1371–1394.
doi: 10.1002/cjoc.202000224
X. Qi, T. Diao, ACS Catal. 10 (2020) 8542–8556.
doi: 10.1021/acscatal.0c02115
U. Wille, Chem. Rev. 113 (2013) 813–853.
doi: 10.1021/cr100359d
Y. Jiang, J.T. Pan, T. Yang, Y. Zhao, M.J. Koh, Chem 7 (2021) 993–1005.
doi: 10.1016/j.chempr.2020.12.024
S. Maiti, J.H. Rhlee, Chem. Commun. 57 (2021) 11346–11349.
doi: 10.1039/D1CC04586E
P.A. Searle, T.F. Molinski, J. Am. Chem. Soc. 117 (1995) 8126–8131.
doi: 10.1021/ja00136a009
G. Mehta, H.S.P. Rao, Synthesis of conjugated dienes and polyenes, in: Z. Rappoport (Ed.), The Chemistry of Dienes and Polyenes, Wiley, New York, 1997, pp. 359–490.
J.A. Marshall, B.A. Johns, J. Org. Chem. 63 (1998) 7885–7892.
doi: 10.1021/jo9811423
K.C. Nicolaou, S.A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 41 (2002) 1668–1698.
doi: 10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z
A.M. Harned, K.A. Volp, Nat. Prod. Rep. 28 (2011) 1790–1810.
doi: 10.1039/c1np00039j
O. Saku, H. Ishida, E. Atsumi, et al., J. Med. Chem. 55 (2012) 3436–3451.
doi: 10.1021/jm300101n
J.A. Funel, S. Abele, Angew. Chem. Int. Ed. 52 (2013) 3822–3863.
doi: 10.1002/anie.201201636
Y. Kosaka, K. Kitazawa, S. Inomata, T. Ishizone, ACS Macro Lett. 2 (2013) 164–167.
doi: 10.1021/mz4000078
E. Mevers, J. Saurí, Y. Liu, et al., J. Am. Chem. Soc. 138 (2016) 12324–12327.
doi: 10.1021/jacs.6b07588
L. Guo, F. Song, S. Zhu, H. Li, L. Chu, Nat. Commun. 9 (2018) 4543–4550.
doi: 10.1038/s41467-018-06904-9
X. Zhao, H. Tu, L. Guo, et al., Nat. Commun. 9 (2018) 3488–3494.
doi: 10.1038/s41467-018-05951-6
L. Guo, H. Tu, S. Zhu, L. Chu, Org. Lett. 21 (2019) 4771–4776.
doi: 10.1021/acs.orglett.9b01658
L. Guo, M. Yuan, Y. Zhang, et al., J. Am. Chem. Soc. 142 (2020) 20390–20399.
doi: 10.1021/jacs.0c08823
H. Li, L. Guo, X. Feng, et al., Chem. Sci. 11 (2020) 4904–4910.
doi: 10.1039/D0SC01471K
F. Song, F. Wang, L. Guo, et al., Angew. Chem. Int. Ed. 59 (2020) 177–181.
doi: 10.1002/anie.201909543
H. Tu, F. Wang, L. Huo, et al., J. Am. Chem. Soc. 142 (2020) 9604–9611.
doi: 10.1021/jacs.0c03708
H. Tu, S. Zhu, F.L. Qing, L. Chu, Synthesis 52 (2020) 1346–1356 (Mass).
doi: 10.1055/s-0039-1690842
X. Feng, L. Guo, S. Zhu, L. Chu, Synlett 32 (2021) 1519–1524.
doi: 10.1055/a-1320-6946
L. Xu, S. Zhu, L. Huo, et al., Org. Chem. Front. 8 (2021) 2924–2931.
doi: 10.1039/D1QO00365H
X. Zhao, S. Zhu, F.L. Qing, L. Chu, Chem. Commun. 57 (2021) 9414–9417.
doi: 10.1039/D1CC03668H
D.A. Everson, R. Shrestha, D.J. Weix, J. Am. Chem. Soc. 132 (2010) 3636 3636.
doi: 10.1021/ja100564b
K.A. Johnson, S. Biswas, D.J. Weix, Chem. Eur. J. 22 (2016) 7399–7402.
doi: 10.1002/chem.201601320
K.E. Poremba, N.T. Kadunce, N. Suzuki, A.H. Cherney, S.E. Reisman, J. Am. Chem. Soc. 139 (2017) 5684–5687.
doi: 10.1021/jacs.7b01705
K. Yang, P.F. Wang, Z.Y. Sun, et al., Org. Lett. 23 (2021) 3933–3938.
doi: 10.1021/acs.orglett.1c01095
I. Ledeţi, M. Budiul, P. Matusz, et al., J. Therm. Anal. Calorim. 131 (2018) 191–199.
doi: 10.1007/s10973-017-6269-5
P. He, X. Liu, H. Zheng, et al., Org. Lett. 14 (2012) 5134–5137.
doi: 10.1021/ol302430h
N. Azizi, M.R. Saidi, Tetrahedron 60 (2004) 383–387.
doi: 10.1016/j.tet.2003.11.012
F. Barbot, A. Kadib Elban, P. Miginiac, Tetrahedron Lett. 24 (1983) 5089–5090.
doi: 10.1016/S0040-4039(00)94048-6
B.R. Ambler, R.A. Altman, Org. Lett. 15 (2013) 5578–5581.
doi: 10.1021/ol402780k
H. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, J. Am. Chem. Soc. 143 (2021) 18394–18399.
doi: 10.1021/jacs.1c10042
G. Stork, T.Y. Chan, J. Am. Chem. Soc. 117 (1995) 6595–6596.
doi: 10.1021/ja00129a025
C. Yao, S. Wang, J. Norton, M. Hammond, J. Am. Chem. Soc. 142 (2020) 4793–4799.
doi: 10.1021/jacs.9b13757
J. Xu, L. Qiao, B. Ying, et al., Org. Chem. Front. 4 (2017) 1116–1120.
doi: 10.1039/C6QO00655H
T.V. RajanBabu, Acc. Chem. Res. 24 (1991) 139–145.
doi: 10.1021/ar00005a003
S. Biswas, D.J. Weix, J. Am. Chem. Soc. 135 (2013) 16192–16197.
doi: 10.1021/ja407589e
J. Breitenfeld, J. Ruiz, M.D. Wodrich, X. Hu, J. Am. Chem. Soc. 135 (2013) 12004–12012.
doi: 10.1021/ja4051923
A.H. Cherney, N.T. Kadunce, S.E. Reisman, J. Am. Chem. Soc. 135 (2013) 7442–7445.
doi: 10.1021/ja402922w
Q. Lin, T. Diao, J. Am. Chem. Soc. 141 (2019) 17937–17948.
doi: 10.1021/jacs.9b10026
N.D. Schley, G.C. Fu, J. Am. Chem. Soc. 136 (2014) 16588–16593.
doi: 10.1021/ja508718m
H. Yin, G.C. Fu, J. Am. Chem. Soc. 141 (2019) 15433–15440.
doi: 10.1021/jacs.9b08185
B. Giese, Angew. Chem. Int. Ed. 28 (1989) 969–980.
doi: 10.1002/anie.198909693
C. Galli, A. Guarnieri, H. Koch, P. Mencarelli, Z. Rappoport, J. Org. Chem. 62 (1997) 4072–4077.
doi: 10.1021/jo962373h
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Chong-Yang Shi , Jian-Xing Gong , Zhen Li , Chao Shu , Long-Wu Ye , Qing Sun , Bo Zhou , Xin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895
Hongjin Shi , Guoyin Yin , Xi Lu , Yangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Jiaqi Jia , Kathiravan Murugesan , Chen Zhu , Huifeng Yue , Shao-Chi Lee , Magnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Ning LI , Siyu DU , Xueyi WANG , Hui YANG , Tao ZHOU , Zhimin GUAN , Peng FEI , Hongfang MA , Shang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472