Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction
-
* Corresponding authors.
E-mail addresses: sllei@hbuas.edu.cn (S. Lei), hxxymujianshuai@tjnu.edu.cn (J. Mu).
Citation:
Jiajun Wang, Mengyao Shi, Guolin Yi, Lu Wang, Shulai Lei, Ke Xu, Shujuan Li, Jianshuai Mu. Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction[J]. Chinese Chemical Letters,
;2022, 33(10): 4623-4627.
doi:
10.1016/j.cclet.2021.12.040
O. Elishav, B. Mosevitzky Lis, E.M. Miller, et al., Chem. Rev.120 (2020) 5352–5436.
doi: 10.1021/acs.chemrev.9b00538
L. Zhao, Y. Li, G. Zhou, et al., Chin. Chem. Lett. 32 (2021) 900–905.
doi: 10.1016/j.cclet.2020.07.016
Y. Yang, Y. Tang, H. Jiang, et al., Chin. Chem. Lett. 30 (2019) 2089–2109.
doi: 10.1016/j.cclet.2019.10.041
J. Liu, J. Ma, Z. Zhang, et al., J. Phys. Mater. 4 (2021) 022004.
doi: 10.1088/2515-7639/abd596
J. Wang, J. Teng, L. Pu, et al., Int. J. Quantum Chem. 119 (2019) e25930.
doi: 10.1002/qua.25930
J. Sun, W. Kong, Z. Jin, et al., Chin. Chem. Lett. 31 (2020) 953–960.
doi: 10.1016/j.cclet.2020.01.035
Y. Wang, Q. Li, W. Shi, et al., Chin. Chem. Lett. 31 (2020) 1768–1772.
doi: 10.1016/j.cclet.2020.01.010
S. Li, M. Shi, J. Yu, et al., Chin. Chem. Lett. 32 (2021) 1977–1982.
doi: 10.1016/j.cclet.2020.09.056
B.H.R. Suryanto, H.L. Du, D. Wang, et al., Nat. Catal. 2 (2019) 290–296.
doi: 10.1038/s41929-019-0252-4
G. Qing, R. Ghazfar, S.T. Jackowski, et al., Chem. Rev. 120 (2020) 5437–5516.
doi: 10.1021/acs.chemrev.9b00659
Y. Ren, C. Yu, X. Tan, et al., Energy Environ. Sci. 14 (2021) 1176–1193.
doi: 10.1039/d0ee03596c
J. Wang, S. Li, F. Yun, et al., Int. J. Quantum Chem. 120 (2020) e26230.
T. Sun, S. Mitchell, J. Li, et al., Adv. Mater. 33 (2021) 2003075.
doi: 10.1002/adma.202003075
S. Yuan, B. Xu, S. Li, et al., Chin. Chem. Lett. 33 (2022) 399–403..
doi: 10.1016/j.cclet.2021.06.077
J. Fu, K. Liu, K. Jiang, et al., Adv. Sci. 6 (2019) 1900796.
doi: 10.1002/advs.201900796
P. Liu, C. Fu, Y. Li, et al., Phys. Chem. Chem. Phys. 22 (2020) 9322–9329.
doi: 10.1039/c9cp06112f
Z. Wei, Y. Feng, J. Ma, J. Energy Chem. 48 (2020) 322–327.
doi: 10.1016/j.jechem.2020.02.014
J. Zhao, Z. Chen, J. Am. Chem. Soc. 139 (2017) 12480–12487.
doi: 10.1021/jacs.7b05213
Z. Ma, Z. Cui, C. Xiao, et al., Nanoscale 12 (2020) 1541–1550.
doi: 10.1039/c9nr08969a
L. Xu, L.M. Yang, E. Ganz, ACS Appl. Mater. Interfaces 13 (2021) 14091–14101.
doi: 10.1021/acsami.0c20553
X. Kang, Z. Chu, X. Duan, Appl. Surf. Sci. 560 (2021) 149667.
doi: 10.1016/j.apsusc.2021.149667
Z.M. Zhang, X. Yao, X.Y. Lang, et al., Appl. Surf. Sci. 536 (2021) 147706.
doi: 10.1016/j.apsusc.2020.147706
J.D. Liu, Z.X. Wei, Y.H. Dou, et al., Rare Met. 39 (2020) 874–880.
doi: 10.1007/s12598-020-01451-z
K. Liu, J. Fu, L. Zhu, et al., Nanoscale 12 (2020) 4903–4908.
doi: 10.1039/c9nr09117c
T. He, S.K. Matta, A. Du, Phys. Chem. Chem. Phys. 21 (2019) 1546–1551.
doi: 10.1039/c8cp06978f
W. Song, L. Fu, C. He, et al., Adv. Theory Simul. 4 (2021) 2100044.
doi: 10.1002/adts.202100044
S. Wang, W. Wei, X. Lv, et al., J. Mater. Chem. A 8 (2020) 1378–1385.
doi: 10.1039/c9ta10935h
H. Niu, X. Wang, C. Shao, et al., ACS Sustain. Chem. Eng. 8 (2020) 13749–13758.
doi: 10.1021/acssuschemeng.0c04401
Z. Xue, X. Zhang, J. Qin, et al., J. Energy Chem. 57 (2021) 443–450.
doi: 10.1016/j.jechem.2020.09.002
J. Wang, M. Shi, G. Yi, et al., Mol. Catal. 511 (2021) 111726.
doi: 10.1016/j.mcat.2021.111726
D. Jiao, Y. Liu, Q. Cai, et al., J. Mater. Chem. A 9 (2021) 1240–1251.
doi: 10.1039/d0ta09496j
W. Zhao, L. Chen, W. Zhang, et al., J. Mater. Chem. A 9 (2021) 6547–6554.
doi: 10.1039/d0ta11144a
B. Tian, S. Li, S. Lei, et al., Chinese Chem. Lett. 32 (2021) 2469–2473.
doi: 10.1016/j.cclet.2021.02.011
Q. Gao, L. Zhang, C. Zheng, et al., Chin. Chem. Lett. (2021), doi:10.1016/j.cclet.2021.11.027.
doi: 10.1016/j.cclet.2021.11.027
M. Miao, X. Gong, S. Lei, et al., Chem. Phys. 548 (2021) 111249.
doi: 10.1016/j.chemphys.2021.111249
Z.W. Chen, J.M. Yan, Q. Jiang, Small Methods 3 (2019) 1800291.
doi: 10.1002/smtd.201800291
Y. Qian, Y. Liu, Y. Zhao, et al., EcoMat. 2 (2020) e12014.
X. Guo, J. Gu, S. Lin, et al., J. Am. Chem. Soc. 142 (2020) 5709–5721.
doi: 10.1021/jacs.9b13349
Y. Ying, X. Luo, J. Qiao, Adv. Funct. Mater. 31 (2021) 2007423.
doi: 10.1002/adfm.202007423
Z. Wei, J. He, Y. Yang, et al., J. Energy Chem. 53 (2021) 303–308.
doi: 10.1016/j.jechem.2020.04.014
Y. Li, Q. Zhang, C. Li, et al., J. Mater. Chem. A 7 (2019) 22242–22247.
doi: 10.1039/c9ta07845b
L. Han, Z. Ren, P. Ou, et al., Angew. Chem. Int. Ed. 60 (2021) 345–350.
doi: 10.1002/anie.202010159
D. Ma, Z. Zeng, L. Liu, et al., J. Phys. Chem. C 123 (2019) 19066–19076.
doi: 10.1021/acs.jpcc.9b05250
T. Deng, C. Cen, H. Shen, et al., J. Phys. Chem. Lett. 11 (2020) 6320–6329.
doi: 10.1021/acs.jpclett.0c01450
H. Zhang, C. Cui, Z. Luo, J. Phys. Chem. C 124 (2020) 6260–6266.
doi: 10.1021/acs.jpcc.0c00486
S. Wang, L. Shi, X. Bai, et al., ACS Cent. Sci. 6 (2020) 1762–1771.
doi: 10.1021/acscentsci.0c00552
Z. Zhang, X. Xu, ACS Appl. Mater. Interfaces 12 (2020) 56987–56994.
doi: 10.1021/acsami.0c16362
L. Jasin Arachchige, Y. Xu, Z. Dai, et al., J. Phys. Chem. C 124 (2020) 15295–15301.
doi: 10.1021/acs.jpcc.0c03899
Z. Shu, Y. Cai, J. Mater. Chem. A 9 (2021) 16056–16064.
doi: 10.1039/d1ta03420k
Z. Zhang, S. Qi, J. Wang, et al., Appl. Surf. Sci. 563 (2021) 150352.
doi: 10.1016/j.apsusc.2021.150352
B. Wang, S. Huang, L. Yang, et al., J. Phys. Chem. C 125 (2021) 14253–14262.
doi: 10.1021/acs.jpcc.1c02397
X. Lv, W. Wei, B. Huang, et al., Nano Lett. 21 (2021) 1871–1878.
doi: 10.1021/acs.nanolett.0c05080
Z. Wei, J. He, Y. Yang, et al., J. Energy Chem. 53 (2021) 303–308.
doi: 10.1016/j.jechem.2020.04.014
Y. Xu, Z. Cai, P. Du, et al., J. Mater. Chem. A 9 (2021) 8489–8500.
doi: 10.1039/d1ta00262g
D. Ma, Y. Wang, L. Liu, et al., Phys. Chem. Chem. Phys. 23 (2021) 4018–4029.
doi: 10.1039/d0cp04843g
J. Li, C. Cao, J. Hao, et al., Diam. Relat. Mater. 15 (2006) 1593–1600.
doi: 10.1016/j.diamond.2006.01.013
H. Yuan, Z. Li, X.C. Zeng, et al., J. Phys. Chem. Lett. 11 (2020) 3481–3487.
doi: 10.1021/acs.jpclett.0c00676
P. Roy, A. Pramanik, P. Sarkar, J. Phys. Chem. Lett. 12 (2021) 2788–2795.
doi: 10.1021/acs.jpclett.1c00421
Y. Wu, C. He, W. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 47520–47529.
doi: 10.1021/acsami.1c11889
G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
doi: 10.1103/PhysRevB.54.11169
P.E. Blöchl, Phys. Rev. B 50 (1994) 17953.
doi: 10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
doi: 10.1103/PhysRevLett.77.3865
S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132 (2010) 154104.
doi: 10.1063/1.3382344
H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
doi: 10.1103/PhysRevB.13.5188
L. Xie, X. Li, X. Wang, et al., J. Phys. Chem. C 123 (2019) 1846–1851.
doi: 10.1021/acs.jpcc.8b10521
X. Lv, W. Wei, F. Li, et al., Nano Lett. 19 (2019) 6391–6399.
doi: 10.1021/acs.nanolett.9b02572
H. Niu, Z. Zhang, X. Wang, et al., Adv. Funct. Mater. 31 (2021) 2008533.
doi: 10.1002/adfm.202008533
L. Shi, Y. Yin, S. Wang, et al., ACS Catal. 10 (2020) 6870–6899.
doi: 10.1021/acscatal.0c01081
Z. Xue, X. Zhang, J. Qin, et al., Nano Energy 80 (2021) 105527.
doi: 10.1016/j.nanoen.2020.105527
C. Ling, X. Niu, Q. Li, et al., J. Am. Chem. Soc. 140 (2018) 14161–14168.
doi: 10.1021/jacs.8b07472
Z.Q. Chu, C. Stampfl, X.M. Duan, J. Phys. Chem. C 123 (2019) 28739–28743.
doi: 10.1021/acs.jpcc.9b08169
S. Ji, Z. Wang, J. Zhao, J. Mater. Chem. A 7 (2019) 2392–2399.
doi: 10.1039/c8ta10497b
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894