-
[1]
T. Khare, S. Pai, K. Koncevicius, et al., Nat. Struct. Mol. Biol. 19 (2012) 1037–1043.
doi: 10.1038/nsmb.2372
-
[2]
E. Kriukiene, Z. Liutkeviciute, S. Klimasauskas, Chem. Soc. Rev. 41 (2012) 6916–6930.
doi: 10.1039/c2cs35104h
-
[3]
M. Tahiliani, K. Koh, Y. Shen, et al., Science 324 (2009) 930–935.
doi: 10.1126/science.1170116
-
[4]
M. Branco, G. Ficz, W. Reik, et al., Nat. Rev. Genet. 13 (2012) 7–13.
-
[5]
Q. Wang, J. Ding, J. Xiong, et al., Chin. Chem. Lett. 32 (2021) 3426–3430.
doi: 10.1016/j.cclet.2021.05.020
-
[6]
C. Nestor, R. Ottaviano, J. Reddington, et al., Genome Res. 22 (2012) 467–477.
doi: 10.1101/gr.126417.111
-
[7]
C. Mariani, J. Madzo, E. Moen, A. Yesilkanal, L. Godley, Cancers 5 (2013) 786–814.
doi: 10.3390/cancers5030786
-
[8]
W. Li, M. Liu, J. Nucleic Acids 2011 (2011) 870726.
-
[9]
M. Booth, M. Branco, G. Ficz, et al., Science 336 (2012) 934–937.
doi: 10.1126/science.1220671
-
[10]
S. Fukuzawa, S. Takahashi, K. Tachibana, S. Tajima, I. Suetake, Bioorg. Med. Chem. 24 (2016) 4254–4262.
doi: 10.1016/j.bmc.2016.07.016
-
[11]
W. Pastor, U. Pape, Y. Huang, et al., Nature 473 (2011) 394–397.
doi: 10.1038/nature10102
-
[12]
X. Wu, Y. Zhang, Nat. Rev. Genet. 18 (2017) 517–534.
-
[13]
T. Le, K. Kim, G. Fan, K. Faull, Anal. Biochem. 412 (2011) 203–209.
doi: 10.1016/j.ab.2011.01.026
-
[14]
A. Szwagierczak, S. Bultmann, C. Schmidt, F. Spada, H. Leonhardt, Nucleic Acids Res. 38 (2010) e181.
doi: 10.1093/nar/gkq684
-
[15]
C. Song, Y. Sun, Q. Dai, et al., ChemBioChem 12 (2011) 1682–1685.
doi: 10.1002/cbic.201100278
-
[16]
Z. Liutkevičiūtė, E. Kriukienė, I. Grigaitytė, V. Masevi · cius, S. Klimašauskas, Angew. Chem. Int. Ed. 50 (2011) 2090–2093.
doi: 10.1002/anie.201007169
-
[17]
Z. Yang, W. Jiang, F. Liu, et al., Chem. Commun. 51 (2015) 14671–14673.
doi: 10.1039/C5CC05921F
-
[18]
Y. Zhou, Z. Yang, X. Li, et al., Electrochim. Acta 174 (2015) 647–652.
doi: 10.1016/j.electacta.2015.06.043
-
[19]
G. Nifker, M. Levy-Sakin, Y. Berkov-Zrihen, et al., ChemBioChem 16 (2015) 1857–1860.
doi: 10.1002/cbic.201500329
-
[20]
Y. Xu, Y. Zhang, H. Yang, et al., Chin. Chem. Lett. 33 (2022) 968–972.
doi: 10.1016/j.cclet.2021.07.041
-
[21]
C. Zhao, H. Wang, B. Zhao, et al., Nucleic Acids Res. 42 (2014) e81.
doi: 10.1093/nar/gku216
-
[22]
H. Zhao, Z. Lu, Chin. Chem. Lett. 25 (2014) 1559–1564.
doi: 10.1016/j.cclet.2014.09.010
-
[23]
Z. Wang, M. Wang, Y. Zhang, C. Zhang, Chem. Commun. 54 (2018) 8602–8605.
doi: 10.1039/C8CC03938K
-
[24]
C. Song, K. Szulwach, Y. Fu, et al., Nat. Biotechnol. 29 (2011) 68–72.
doi: 10.1038/nbt.1732
-
[25]
T. Shahal, N. Gilat, Y. Michaeli, et al., Anal. Chem. 86 (2014) 8231–8237.
doi: 10.1021/ac501609d
-
[26]
L. Hu, Y. Liu, S. Han, et al., J. Am. Chem. Soc. 141 (2019) 8694–8697.
doi: 10.1021/jacs.9b02512
-
[27]
J. He, Z. Wu, H. Zhou, et al., Anal. Chem. 82 (2010) 1358–1364.
doi: 10.1021/ac902416u
-
[28]
A. Joneja, X. Huang, Anal. Biochem. 414 (2011) 58–69.
doi: 10.1016/j.ab.2011.02.025
-
[29]
B. Chowdhury, I. Cho, N. Hahn, J. Irudayaraj, Anal. Chim. Acta 852 (2014) 212–217.
doi: 10.1016/j.aca.2014.09.020
-
[30]
L. Shen, Y. Zhang, Method. Enzymol. 512 (2012) 93–105.
-
[31]
Y. Tang, J. Chu, W. Huang, et al., Anal. Chem. 85 (2013) 6129–6135.
-
[32]
T. Shahal, O. Koren, G. Shefer, N. Stern, Y. Ebenstein, Anal. Chim. Acta 1038 (2018) 87–96.
-
[33]
C. Li, Y. Dong, X. Zou, et al., Anal. Chem. 93 (2021) 1939–1943.
-
[34]
D. Globisch, M. Münzel, M. Müller, et al., PLOS One 5 (2010) e15367.