Recent advances in microchip-based methods for the detection of pathogenic bacteria
-
* Corresponding authors.
E-mail addresses: zhangyan_ecnu@163.com (Y. Zhang), xianzhihu2@sina.com (X. Hu).
Citation: Yan Zhang, Xianzhi Hu, Qingjiang Wang, Yi Zhang. Recent advances in microchip-based methods for the detection of pathogenic bacteria[J]. Chinese Chemical Letters, ;2022, 33(6): 2817-2831. doi: 10.1016/j.cclet.2021.11.033
J.H. Jung, G.Y. Kim, T.S. Seo, Lab Chip 11 (2011) 3465-3470.
doi: 10.1039/c1lc20350a
L. Liu, J. Liu, H. Huang, et al., Microchem. J. 148 (2019) 702-707.
doi: 10.1016/j.microc.2019.05.016
D. Li, L. Liu, Q. Huang, et al., World J. Microbiol. Biotechnol. 37 (2021) 45.
doi: 10.1007/s11274-021-03002-9
E. Voitoux, V. Lafarge, C. Collette, B. Lombard, Int. J. Food Microbiol. 77 (2002) 213-221.
doi: 10.1016/S0168-1605(02)00110-1
C.L. Lee, D.S.W. Ow, S.K.W. Oh, J. Microbiol. Methods 65 (2006) 258-267.
doi: 10.1016/j.mimet.2005.07.019
E. Bulard, A. Bouchet-Spinelli, P. Chaud, et al., Anal. Chem. 87 (2015) 1804-1811.
doi: 10.1021/ac5037704
T. Chang, S. Huang, J. Food Prot. 57 (1994) 184-189.
doi: 10.4315/0362-028X-57.3.184
L. Xu, Z. Lu, L. Cao, et al., Food Control 75 (2017) 21-28.
doi: 10.1016/j.foodcont.2016.12.018
E. Yang, D. Li, P. Yin, et al., Biosens. Bioelectron. 172 (2021) 112758.
doi: 10.1016/j.bios.2020.112758
Y. Zhag, C. Tan, R. Fei, et al., Anal. Chem. 86 (2014) 1115-1122.
doi: 10.1021/ac4028774
H. Yu, W. Guo, X. Lu, et al., Food Control 127 (2021) 108117.
doi: 10.1016/j.foodcont.2021.108117
M.G. Rizzo, S. Carnazza, L.M. De Plano, et al., Sens. Actuators B 329 (2021) 129227.
doi: 10.1016/j.snb.2020.129227
R. Tong, L. Zhang, Q. Song, et al., Electrophoresis 40 (2019) 1699-1707.
doi: 10.1002/elps.201900090
Y. Zhang, X. Hu, Q. Wang, Talanta 232 (2021) 122410.
doi: 10.1016/j.talanta.2021.122410
F. Luo, Y. Lu, X. Geng, et al., Anal. Chem. 93 (2021) 3551-3558.
doi: 10.1021/acs.analchem.0c04991
Y. Shen, J. Yi, M. Song, et al., Analyst 146 (2021) 4146-4153.
doi: 10.1039/D1AN00335F
N. Zhuang, J. Ma, L. Yang, et al., Microchem. J. 164 (2021) 106075.
doi: 10.1016/j.microc.2021.106075
H.O. Kaya, A.E. Cetin, M. Azimzadeh, S.N. Topkaya, J. Electroanal. Chem. 882 (2021) 114989.
doi: 10.1016/j.jelechem.2021.114989
R. Pourakbari, N. Shadjou, H. Yousefi, et al., Microchim. Acta 186 (2019) 820.
doi: 10.1007/s00604-019-3966-8
M. Shahdordizadeh, S.M. Taghdisi, N. Ansari, et al., Sens. Actuators B 241 (2017) 619-635.
doi: 10.1016/j.snb.2016.10.088
M. Majdinasab, A. Hayat, J.L. Marty, TrAC Trends in Anal. Chem. 107 (2018) 60-77.
doi: 10.1016/j.trac.2018.07.016
A.D. Ellington, J.W. Szostak, Nature 355 (1992) 850-852.
doi: 10.1038/355850a0
C. Tuerk, L. Gold, Science 249 (1990) 505-510.
doi: 10.1126/science.2200121
X. Wang, D. Yan, Microchem. J. 165 (2021) 106099.
doi: 10.1016/j.microc.2021.106099
X. Zhang, Y. Wang, H. Deng, et al., Microchem. J. 161 (2021) 105761.
doi: 10.1016/j.microc.2020.105761
M. Zayats, Y. Huang, R. Gill, C.A. Ma, I. Willner, J. Am. Chem. Soc. 128 (2006) 13666-13667.
doi: 10.1021/ja0651456
S. Fukuyama, S. Kumamoto, S. Nagano, et al., Talanta 228 (2021) 122239.
doi: 10.1016/j.talanta.2021.122239
A. Numnuam, K.Y. Chumbimuni-Torres, Y. Xiang, et al., Anal. Chem. 80 (2008) 707-712.
doi: 10.1021/ac701910r
W. Gao, B. Li, R. Yao, et al., Anal. Chem. 89 (2017) 9836-9842.
doi: 10.1021/acs.analchem.7b01813
H.M. So, D.W. Park, E.K. Jeon, et al., Small 4 (2008) 197-201.
doi: 10.1002/smll.200700664
C. Luo, Y. Lei, L. Yan, et al., Electroanalysis 24 (2012) 1186-1191.
doi: 10.1002/elan.201100700
J. Yuan, Z. Tao, Y. Yu, et al., Food Control 37 (2014) 188-192.
doi: 10.1016/j.foodcont.2013.09.046
Y. Zhang, F. Luo, Y. Zhang, et al., J. Chromatogr. A 1534 (2018) 188-194.
doi: 10.1016/j.chroma.2017.12.054
Y. Zhang, L. Zhu, P. He, et al., Talanta 197 (2019) 284-290.
doi: 10.1016/j.talanta.2019.01.040
J. Yu, H. Wu, L. He, et al., Talanta 225 (2021) 122062.
doi: 10.1016/j.talanta.2020.122062
Y. Wang, N. Gan, Y. Zhou, et al., Biosens. Bioelectron. 97 (2017) 100-106.
doi: 10.1016/j.bios.2017.05.017
J. Li, Y. Xiang, L. Zhang, et al., Sens. Actuators B 288 (2019) 757-762.
doi: 10.1016/j.snb.2019.03.058
S. Wang, S. Lu, J. Zhao, et al., Biosens. Bioelectron. 126 (2019) 565-571.
doi: 10.1016/j.bios.2018.09.088
F. Luo, Z. Li, G. Dai, et al., Sens. Actuators B 306 (2020) 127577.
doi: 10.1016/j.snb.2019.127577
Y. Qin, L. Zhang, S. Li, et al., Chem. Commun. 53 (2017) 455-458.
doi: 10.1039/C6CC08911A
F. Luo, Z. Li, G. Dai, et al., J. Chromatogr. A 1615 (2020) 460734.
doi: 10.1016/j.chroma.2019.460734
Y. Zhang, L. Zhu, Y. Zhang, P. He, Q. Wang, J. Chromatogr. A 1555 (2018) 100-105.
doi: 10.1016/j.chroma.2018.04.058
J.Y. Chen, Z.J. Liu, X.W. Wang, et al., Anal. Chem. 91 (2019) 4552-4558.
doi: 10.1021/acs.analchem.8b05692
F. Luo, Y. Lu, Z. Li, et al., Sens. Actuators B 325 (2020) 128784.
doi: 10.1016/j.snb.2020.128784
J. Xu, P. Zhang, L. Zhuang, et al., J. Food Saf. 39 (2019) 12674.
M. Aslam, J. Hogan, K.L. Smith, Food Microbiol 20 (2003) 345-350.
doi: 10.1016/S0740-0020(02)00121-1
D. Zeng, S. Chen, L. Jiang, et al., Microchem. J. 159 (2020) 105418.
doi: 10.1016/j.microc.2020.105418
D. Zeng, B. Qian, K. Zhao, et al., Microchem. J. 156 (2020) 104940.
doi: 10.1016/j.microc.2020.104940
J.L. McKillip, L.A. Jaykus, M.A. Drake, J. Appl. Microbiol. 89 (2000) 49-55.
doi: 10.1046/j.1365-2672.2000.01079.x
L. De Vero, E. Gala, M. Gullo, et al., Food Microbiol 23 (2006) 809-813.
doi: 10.1016/j.fm.2006.01.006
X. Jiang, N. Shao, W. Jing, et al., Talanta 122 (2014) 246-250.
doi: 10.1016/j.talanta.2014.01.053
Y. Li, Y. Li, B. Zheng, L. Qu, C. Li, Anal. Chim. Acta 643 (2009) 100-107.
doi: 10.1016/j.aca.2009.04.006
Z. Yan, X. Hu, Q. Wang, Microchem. J. 157 (2020) 104876.
doi: 10.1016/j.microc.2020.104876
L. Zhu, Y. Zhang, P. He, Y. Zhang, Q. Wang, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 1093 (2018) 141-146.
Y. Li, H. Su, Y. Lan, J. AOAC Int. 101 (2018) 1833-1838.
doi: 10.5740/jaoacint.17-0507
J. Chen, Y. Sun, X. Peng, et al., Sensors 21 (2021) 1334.
doi: 10.3390/s21041334
J.W. Lee, D. Lee, Y.T. Kim, et al., Biosens. Bioelectron. 91 (2017) 388-392.
doi: 10.1016/j.bios.2016.12.053
M.G. Rizzo, S. Carnazza, L.M. De Plano, et al., Sens. Actuators B 329 (2021) 129227.
doi: 10.1016/j.snb.2020.129227
P. Ohlsson, M. Evander, K. Petersson, et al., Anal. Chem. 88 (2016) 9403-9411.
doi: 10.1021/acs.analchem.6b00323
L. Gorgannezhad, K.R. Sreejith, J. Zhang, et al., Micromachines (Basel) 10 (2019) 883.
doi: 10.3390/mi10120883
S.J. Oh, B.H. Park, J.H. Jung, et al., Biosens. Bioelectron. 75 (2016) 293-300.
doi: 10.1016/j.bios.2015.08.052
Y. Fu, X. Zhou, X. Duan, et al., Sens. Actuators B 321 (2020) 128502.
doi: 10.1016/j.snb.2020.128502
L. Zou, X. Li, J. Zhang, L. Ling, Anal. Chem. 92 (2020) 12656-12662.
doi: 10.1021/acs.analchem.0c02858
T. Zhang, Q. Tao, X.J. Bian, Q. Chen, J. Yan, Chin. J. Anal. Chem. 49 (2021) 377-386.
doi: 10.1016/S1872-2040(21)60085-3
Y. He, L. Cheng, Y. Yang, et al., Sens. Actuators B 320 (2020) 128407.
doi: 10.1016/j.snb.2020.128407
R. Cai, F. Yin, H. Chen, Y. Tian, N. Zhou, Microchim. Acta 187 (2020) 304.
doi: 10.1007/s00604-020-04293-9
T. Wang, Q. Peng, B. Guo, et al., Biosens. Bioelectron. 150 (2020) 111954.
doi: 10.1016/j.bios.2019.111954
J. Cui, H. Han, J. Piao, et al., ACS Appl. Mater. Interfaces 12 (2020) 34130-34136.
doi: 10.1021/acsami.0c06032
K. Fan, R. Yang, Y. Zhao, et al., Sens. Actuators B 321 (2020) 128515.
doi: 10.1016/j.snb.2020.128515
R. Yuan, S. Ding, Y. Yan, et al., Biosens. Bioelectron. 77 (2016) 19-25.
doi: 10.1016/j.bios.2015.09.009
F. Luo, Y. Lu, X. Geng, et al., Anal. Chem. 93 (2021) 3551-3558.
doi: 10.1021/acs.analchem.0c04991
Y. Peng, S. Wu, Z. Sun, et al., Sens. Actuators B 313 (2020) 128046.
doi: 10.1016/j.snb.2020.128046
Y. Dai, A. Furst, C.C. Liu, Trends Biotechnol 37 (2019) 1367-1382.
doi: 10.1016/j.tibtech.2019.10.001
A.M. Solovjev, S.A. Kurzeev, I.Y. Sakharov, Talanta 215 (2020) 120895.
doi: 10.1016/j.talanta.2020.120895
O. Mayboroda, I. Katakis, C.K. O'Sullivan, Anal. Biochem. 545 (2018) 20-30.
doi: 10.1016/j.ab.2018.01.005
H. Dong, J. Zhang, H. Ju, et al., Anal. Chem. 84 (2012) 4587-4593.
doi: 10.1021/ac300721u
T. Wang, Z. Zhang, Y. Li, G. Xie, Sens. Actuators B 221 (2015) 148-154.
doi: 10.1016/j.snb.2015.06.057
X. Yan, M. Tang, J. Yang, et al., RSC Adv 8 (2018) 31710-31716.
doi: 10.1039/C8RA06480F
Y. Lu, F. Luo, Z. Li, G. Dai, et al., Talanta 222 (2021) 121686.
doi: 10.1016/j.talanta.2020.121686
Q.J. Zhou, J.F. Lu, X.R. Su, et al., J. Fish Dis. 44 (2021) 401-413.
doi: 10.1111/jfd.13325
J. Fu, E.L.C. Chiang, C.A.D. Medriano, L. Li, S. Bae, Water Res. 199 (2021) 117172.
doi: 10.1016/j.watres.2021.117172
Y.P. Wong, S. Othman, Y.L. Lau, S. Radu, H.Y. Chee, J. Appl. Microbiol. 124 (2018) 626-643.
doi: 10.1111/jam.13647
S. Lee, V.S.L. Khoo, C.A.D. Medriano, et al., Water Res. 160 (2019) 371-379.
doi: 10.1016/j.watres.2019.05.049
H. Wang, Z. Ma, J. Qin, et al., Biosens. Bioelectron. 126 (2019) 373-380.
doi: 10.1016/j.bios.2018.11.011
R. Zhong, S. Liu, X. Wang, et al., Anal. Methods 12 (2020) 2985-2994.
doi: 10.1039/D0AY00566E
M. Dou, S.T. Sanjay, D.C. Dominguez, et al., Biosens. Bioelectron. 87 (2017) 865-873.
doi: 10.1016/j.bios.2016.09.033
A.L.H. Gray, A. Antevska, D.S. Oluwatoba, et al., Anal. Chem. 92 (2020) 11802-11808.
doi: 10.1021/acs.analchem.0c01974
W. Kong, J. Xiong, H. Yue, Z. Fu, Anal. Chem. 87 (2015) 9864-9868.
doi: 10.1021/acs.analchem.5b02301
Y. Zhang, Y. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 29 (2018) 1383-1386.
doi: 10.1016/j.cclet.2017.10.026
B. Song, J. Wang, Z. Yan, et al., Bioengineered 11 (2020) 1137-1145.
doi: 10.1080/21655979.2020.1831362
A. Garrido-Maestu, S. Azinheiro, J. Carvalho, P. Fuciños, M. Prado, Food Control 108 (2020) 106790.
doi: 10.1016/j.foodcont.2019.106790
X. Zhang, T. Wu, Y. Yang, et al., Sens. Actuators B 321 (2020) 128472.
doi: 10.1016/j.snb.2020.128472
C. Sicard, N. Shek, D. White, et al., Anal. Bioanal. Chem. 406 (2014) 5395-5403.
doi: 10.1007/s00216-014-7935-0
E.W. Rice, M.J. Allen, S.C. Edberg, Appl. Environ. Microbiol. 56 (1990) 1203-1205.
doi: 10.1128/aem.56.5.1203-1205.1990
L.V. Tarditto, M.A. Zon, H.G. Ovando, et al., Talanta 174 (2017) 507-513.
doi: 10.1016/j.talanta.2017.06.059
J. Chen, A.A. Jackson, V.M. Rotello, S.R. Nugen, Small 12 (2016) 2469-2475.
doi: 10.1002/smll.201503682
H. Labrousse, J.L. Guesdon, J. Ragimbeau, S. Avrameas, J. Immunol. Methods 48 (1982) 133-147.
doi: 10.1016/0022-1759(82)90188-0
Y. Zhang, Y. Zhang, L. Zhu, P. He, Q. Wang, Anal. Methods 11 (2019) 1558-1565.
doi: 10.1039/C9AY00067D
N. Van Dan, N. Hau Van, K.H. Bui, T.S. Seo, Sens. Actuators B 301 (2019) 127108.
doi: 10.1016/j.snb.2019.127108
Z. Altintas, M. Akgun, G. Kokturk, Y. Uludag, Biosens. Bioelectron. 100 (2018) 541-548.
doi: 10.1016/j.bios.2017.09.046
Y.L. Fang, C.H. Wang, Y.S. Chen, et al., Lab Chip 21 (2021) 113-121.
doi: 10.1039/D0LC00966K
P. Chen, C. Chen, H. Su, et al., Talanta 224 (2021) 121844.
doi: 10.1016/j.talanta.2020.121844
N. Yamaguchi, Y. Fujii, Biol. Pharm. Bull. 43 (2020) 87-92.
doi: 10.1248/bpb.b19-00549
Z. Jin, G. Ding, G. Li, et al., J. Chem. Technol. Biotechnol. 95 (2020) 1460-1466.
doi: 10.1002/jctb.6331
Y. Li, T. Wang, J. Wu, Analyst 146 (2021) 1151.
doi: 10.1039/D0AN02222E
M.S. Khan, S.K. Misra, K. Dighe, et al., Biosens. Bioelectron. 110 (2018) 132-140.
doi: 10.1016/j.bios.2018.03.044
S.J. Oh, B.H. Park, G. Choi, et al., Lab Chip 16 (2016) 1917-1926.
doi: 10.1039/C6LC00326E
F. Tian, J. Lyu, J. Shi, F. Tan, M. Yang, Sens. Actuators B 225 (2016) 312-318.
doi: 10.1016/j.snb.2015.11.059
S. Wang, L. Zheng, G. Cai, et al., Biosens. Bioelectron. 140 (2019) 111333.
doi: 10.1016/j.bios.2019.111333
M. Li, A. Ge, M. Liu, et al., Talanta 219 (2020) 121221.
doi: 10.1016/j.talanta.2020.121221
K. Kwon, J.W. Park, K.A. Hyun, et al., Sens. Actuators B 248 (2017) 580-588.
doi: 10.1016/j.snb.2017.04.043
M. Kim, T. Jung, Y. Kim, et al., Biosens. Bioelectron. 74 (2015) 1011-1015.
doi: 10.1016/j.bios.2015.07.059
S. Mao, X. Hu, Y. Tanaka, et al., Chin. Chem. Lett. (2021), doi:10.1016/j.cclet. 2021.09.065.
doi: 10.1016/j.cclet.2021.09.065
Y. Wu, L. Zhao, Y. Chang, et al., Chin. Chem. Lett. 32 (2021) 3446-3449.
doi: 10.1016/j.cclet.2021.05.034
W. Hu, D. Gao, Z. Su, et al., Chin. Chem. Lett. (2021), doi:10.1016/j.cclet.2021. 08.041.
doi: 10.1016/j.cclet.2021.08.041
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Yanfei Liu , Yaqin Hu , Yifu Tan , Qiwen Chen , Zhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Dexuan Xiao , Tianyu Chen , Tianxu Zhang , Sirong Shi , Mei Zhang , Xin Qin , Yunkun Liu , Longjiang Li , Yunfeng Lin . Transdermal treatment for malignant melanoma by aptamer-modified tetrahedral framework nucleic acid delivery of vemurafenib. Chinese Chemical Letters, 2024, 35(4): 108602-. doi: 10.1016/j.cclet.2023.108602
Ruixin Liu , Feng Shi , Yanping Xia , Haibing Zhu , Jiawen Cao , Kai Peng , Chuanli Ren , Juan Li , Zhanjun Yang . Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chinese Chemical Letters, 2024, 35(11): 109664-. doi: 10.1016/j.cclet.2024.109664
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
Yifei Zhang , Yuncong Xue , Laiwei Gao , Rui Liao , Feng Wang , Fei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228