Synthesis of 3D printing materials and their electrochemical applications
* Corresponding author.
E-mail address: panghuan@yzu.edu.cn (H. Pang).
Citation: Huijie Zhou, Hui Yang, Shiyi Yao, Li Jiang, Nuochen Sun, Huan Pang. Synthesis of 3D printing materials and their electrochemical applications[J]. Chinese Chemical Letters, ;2022, 33(8): 3681-3694. doi: 10.1016/j.cclet.2021.11.018
R. Zhu, J. Ding, L. Jin, H. Pang, Coord. Chem. Rev. 389 (2019) 119–140.
doi: 10.1016/j.ccr.2019.03.002
P. Chang, H. Mei, S. Zhou, K.G. Dassios, L. Cheng, J. Mater. Chem. A 7 (2019) 4230–4258.
doi: 10.1039/c8ta11860d
K. Li, M. Liang, H. Wang, et al., Adv. Funct. Mater. 30 (2020) 2000842.
doi: 10.1002/adfm.202000842
J. Wang, N. Li, Y.X. Xu, H. Pang, Chem. Eur. J. 26 (2020) 6402–6422.
doi: 10.1002/chem.202000294
J. Gu, Y. Xu, Q. Li, H. Pang, Chin. Chem. Lett. 32 (2021) 2017–2020.
doi: 10.1016/j.cclet.2020.11.066
J. Liu, H. Wang, R. Ye, P. Jian, L. Wang, J. Colloid Interface Sci. 585 (2021) 61–71.
doi: 10.5121/csit.2021.111406
Z.E. Shi, S.H. Liu, C.H. Tsai, et al., FlatChem 28 (2021) 100254.
doi: 10.1016/j.flatc.2021.100254
A. Qian, Y. Pang, G. Wang, et al., ACS Appl. Mater. Interfaces 12 (2020) 54791–54797.
doi: 10.1021/acsami.0c16959
Q. Li, Z. Shao, T. Han, M. Zheng, H. Pang, ACS Sustain. Chem. Eng. 7 (2019) 8986–8992.
doi: 10.1021/acssuschemeng.9b01148
H. Zhou, M. Zheng, H. Tang, et al., Small 16 (2019) 1904252.
B. Li, H. Xue, H. Pang, Q. Xu, Sci. China Chem. 63 (2020) 475–482.
doi: 10.1007/s11426-020-9700-8
Y. Pang, Y. Cao, Y. Chu, et al., Adv. Funct. Mater. 30 (2019) 1906244.
D.P. Rocha, P.R. Oliveira, B.C. Janegitz, et al., Anal. Chim. Acta 1118 (2020) 73–91.
doi: 10.1016/j.aca.2020.03.028
Z.H. Jaffari, S.M.A. Abuabdou, D.Q. Ng, M.J.K. Bashir, FlatChem 28 (2021) 100256.
doi: 10.1016/j.flatc.2021.100256
W. Zheng, L.Y.S. Lee, ACS Energy Lett. 6 (2021) 2838–2843.
doi: 10.1021/acsenergylett.1c01350
S. Zheng, Y. Zheng, H. Xue, H. Pang, Chem. Eng. J. 395 (2020) 125166.
doi: 10.1016/j.cej.2020.125166
Y. Bräuniger, S. Lochmann, J. Grothe, M. Hantusch, S. Kaskel, ACS Appl. Energy Mater. 4 (2021) 1560–1567.
doi: 10.1021/acsaem.0c02745
C. Wang, X. Li, Q. Li, H. Pang, FlatChem 16 (2019) 100107.
doi: 10.1016/j.flatc.2019.100107
M. Du, Q. Li, Y. Zhao, C. Liu, H. Pang, Coord. Chem. Rev. 416 (2020) 213341.
doi: 10.1016/j.ccr.2020.213341
H. Duan, Z. Zhao, J. Lu, et al., ACS Appl. Mater. Interfaces 13 (2021) 33083–33090.
doi: 10.1021/acsami.1c08161
R. Zhu, J. Ding, J. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 25037–25041.
doi: 10.1021/acsami.0c05450
X. Meng, X. Xiao, H. Pang, Front. Chem. 8 (2020) 330.
doi: 10.3389/fchem.2020.00330
S. Zheng, X. Guo, H. Xue, et al., Chem. Commun. 55 (2019) 10904–10907.
doi: 10.1039/c9cc06113d
X. Li, P. Zhu, C. Liu, H. Pang, Chem. Commun. 55 (2019) 9160–9163.
doi: 10.1039/c9cc03787j
H.V. Doan, H.A. Hamzah, P.K. Prabhakaran, C. Petrillo, V.P. Ting, Nano-Micro Lett. (2019) 11: 54.
doi: 10.1007/s40820-019-0286-9
S. Hwa Park, H. Jun Park, S. Gyu Son, et al., FlatChem 29 (2021) 100268.
doi: 10.1016/j.flatc.2021.100268
G. Bhattacharya, S.J. Fishlock, A. Pritam, S. Sinha Roy, J.A. McLaughlin, Adv. Sustain. Syst. 4 (2020) 1900133.
doi: 10.1002/adsu.201900133
A. Ambrosi, R.R.S. Shi, R.D. Webster, J. Mater. Chem. A 8 (2020) 21902–21929.
doi: 10.1039/d0ta07939a
X. Xiao, L. Zou, H. Pang, Q. Xu, Chem. Soc. Rev. 49 (2020) 301–331.
doi: 10.1039/c7cs00614d
J. Li, X. Song, W. Zhang, et al., Chem. Eur. J. 26 (2020) 3326–3334.
doi: 10.1002/chem.201904563
Z. Hallaji, Z. Bagheri, S.O. Kalji, E. Ermis, B. Ranjbar, FlatChem 29 (2021) 100271.
doi: 10.1016/j.flatc.2021.100271
S. Zhang, Y. Liu, J. Hao, et al., Adv. Funct. Mater. 31 (2021) 2103092.
C. Zhang, M.P. Kremer, A. Seral-Ascaso, et al., Adv. Funct. Mater. 28 (2018) 1705506.
doi: 10.1002/adfm.201705506
J. Ma, X. Guo, H. Xue, et al., Chem. Eng. J. 380 (2020) 122428.
doi: 10.1016/j.cej.2019.122428
K. Iwase, S. Stauss, Y. Gambe, R. Miyazaki, I. Honma, ACS Appl. Energy Mater. 4 (2021) 3651–3659.
doi: 10.1021/acsaem.1c00076
X. Li, X. Xiao, Q. Li, et al., Inorg. Chem. Front. 5 (2018) 11–28.
doi: 10.1039/C7QI00434F
L. Zeng, P. Li, Y. Yao, et al., Mater. Today Nano 12 (2020) 100094.
doi: 10.1016/j.mtnano.2020.100094
C. Wang, J. Li, Z. Zhou, et al., EnergyChem 3 (2021) 100055.
doi: 10.1016/j.enchem.2021.100055
N. Maldonado, P. Amo-Ochoa, Chem. Eur. J. 27 (2021) 2887–2907.
doi: 10.1002/chem.202002259
C. Sun, S. Liu, X. Shi, et al., Chem. Eng. J. 381 (2020) 122641.
doi: 10.1016/j.cej.2019.122641
A. Akbari, P. Sheath, S.T. Martin, et al., Nat. Commun. 7 (2016) 10891.
doi: 10.1038/ncomms10891
Y. Ru, S. Zheng, H. Xue, H. Pang, Chem. Eng. J. 382 (2020) 122853.
doi: 10.1016/j.cej.2019.122853
L. Chen, X. Guo, W. Lu, et al., Coord. Chem. Rev. 368 (2018) 13–34.
doi: 10.1016/j.ccr.2018.04.015
C. Yu, J. An, Q. Chen, et al., Small Methods 4 (2020) 1900824.
doi: 10.1002/smtd.201900824
Z. Li, Z. Bai, H. Mi, et al., ACS Sustain. Chem. Eng. 7 (2019) 13127–13135.
doi: 10.1021/acssuschemeng.9b02303
B. Jiang, Y. Wei, J. Wu, et al., EnergyChem 3 (2021) 100058.
doi: 10.1016/j.enchem.2021.100058
Y. Liu, J. Wang, I. Imaz, D. Maspoch, J. Am. Chem. Soc. 143 (2021) 12943–12947.
doi: 10.1021/jacs.1c05363
S. Yang, Y. Cheng, X. Xiao, H. Pang, Chem. Eng. J. 384 (2020) 123294.
doi: 10.1016/j.cej.2019.123294
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300–2304.
doi: 10.1016/j.cclet.2020.03.041
F. Song, G. Li, Y. Zhu, et al., J. Mater. Chem. A 8 (2020) 18538–18559.
doi: 10.1039/d0ta06222g
P. Yang, H.J. F. an, Adv. Mater. Technol. 5 (2020) 2000217.
doi: 10.1002/admt.202000217
R. Zhou, X. Li, H. Pang, Chem. Eng. J. 404 (2021) 126310.
doi: 10.1016/j.cej.2020.126310
Q.Y. Li, L. Zhang, Y.X. Xu, et al., ACS Sustain. Chem. Eng. 7 (2019) 5027–5033.
doi: 10.1021/acssuschemeng.8b05744
H. Zhou, M. Zheng, H. Pang, Chem. Eng. J. 416 (2021) 127884.
doi: 10.1016/j.cej.2020.127884
F. Zhang, M. Wei, V.V. Viswanathan, et al., Nano Energy 40 (2017) 418–431.
doi: 10.1016/j.nanoen.2017.08.037
T.T. Lv, Y.Y. Liu, H. Wang, et al., Chem. Eng. J. 411 (2021) 128533.
doi: 10.1016/j.cej.2021.128533
Y. Li, Y. Shan, H. Pang, Chin. Chem. Lett. 31 (2020) 2280–2286.
M. Zhang, H. Mei, P. Chang, L. Cheng, J. Mater. Chem. A 8 (2020) 10670–10694.
doi: 10.1039/d0ta02099k
Y. Zang, J. Fan, Y. Ju, H.G. Xue, H. Pang, Chem. Eur. J. 24 (2018) 14010–14027.
doi: 10.1002/chem.201801358
F.C. Walsh, C.P. de León, Electrochim. Acta 280 (2018) 121–148.
S.H. Park, G. Goodall, W.S. Kim, Mater. Des. 193 (2020) 108797.
X. Guo, N. Li, Y. Cheng, et al., Chem. Eng. J. 411 (2021) 128544.
doi: 10.1016/j.cej.2021.128544
Y. Liu, C. Gao, Q. Li, H. Pang, Chem. Eur. J. 25 (2019) 2141–2160.
doi: 10.1002/chem.201803982
V. Egorov, U. Gulzar, Y. Zhang, S. Breen, C. O'Dwyer, Adv. Mater 32 (2020) 2000556.
doi: 10.1002/adma.202000556
S. Zheng, H. Xue, H. Pang, Coord. Chem. Rev. 373 (2018) 2–21.
doi: 10.3390/jcs3010002
B. Zhang, T. Li, L. Huang, et al., Nanoscale 13 (2021) 5400–5409.
doi: 10.1039/d1nr00078k
X. Tian, J. Jin, S. Yuan, et al., Adv. Energy Mater. 7 (2017) 1700127.
doi: 10.1002/aenm.201700127
J. Zhao, H. Lu, X. Zhao, et al., ACS Mater. Lett. 2 (2020) 1041–1056.
doi: 10.1021/acsmaterialslett.0c00176
X. Qin, B. Yan, J. Yu, et al., Inorg. Chem. Front. 4 (2017) 1424–1444.
Q. Li, X. Li, J. Gu, et al., Nano Res. 14 (2021) 1405–1412.
doi: 10.1007/s12274-020-3190-1
G. Ge, Y.Z. Zhang, W. Zhang, et al., ACS Nano 15 (2021) 2698–2706.
doi: 10.1021/acsnano.0c07998
C. Zhang, K. Shen, B. Li, S. Li, S. Yang, J. Mater. Chem. A 6 (2018) 19960–19966.
doi: 10.1039/c8ta08559e
Y. Tong, H. Mao, Y. Xu, J. Liu, Inorg. Chem. Front. 6 (2019) 2055–2060.
doi: 10.1039/c9qi00325h
Y. Liang, Y. Duan, C. Fan, et al., Chem. Eng. J. 360 (2019) 671–679.
Q. Yang, Q. Wang, Y. Long, et al., Adv. Energy Mater. 10 (2020) 1903193.
doi: 10.1002/aenm.201903193
H. Wang, K. Xie, Y. You, et al., Adv. Energy Mater. 9 (2019) 1901806.
doi: 10.1002/aenm.201901806
Z. Sun, J. He, M. Yuan, et al., Nano Energy 65 (2019) 103996.
W. Chen, X. Zhang, Y. Peng, et al., J. Power Sources 438 (2019) 227004.
W. Chen, X. Zhang, L.E. Mo, et al., Chem. Eng. J. 375 (2019) 121981.
H. Wu, Q. Yu, C.Y. Lao, et al., Energy Storage Mater. 18 (2019) 43–50.
J. Yuan, X. Hu, J. Chen, et al., J. Mater. Chem. A 7 (2019) 9289–9296.
doi: 10.1039/c8ta12512k
Z. Jin, C. Liu, Z. Liu, et al., Adv. Energy Mater. 10 (2020) 2000797.
doi: 10.1002/aenm.202000797
X. Wang, Y. Li, S. Wang, et al., Adv. Energy Mater. 10 (2020) 2000081.
doi: 10.1002/aenm.202000081
J. Zhao, H. Lu, Y. Zhang, et al., Sci. Adv. 7 (2021) eabd6978.
W. Yu, H. Zhou, B.Q. Li, S. Ding, ACS Appl. Mater. Interfaces 9 (2017) 4597–4604.
doi: 10.1021/acsami.6b13904
R. André, F. Natálio, M. Humanes, et al., Adv. Funct. Mater. 21 (2011) 501–509.
doi: 10.1002/adfm.201001302
Z. Chen, Y. Qin, D. Weng, et al., Adv. Funct. Mater. 19 (2009) 3420–3426.
doi: 10.1002/adfm.200900971
Z. Chen, V. Augustyn, J. Wen, et al., Adv. Mater. 23 (2011) 791–795.
doi: 10.1002/adma.201003658
L. Yin, B. Hu, L. Zhuang, et al., Chem. Eng. J. 381 (2020) 122744.
Y. Wan, P. Qi, D. Zhang, J. Wu, Y. Wang, Biosens. Bioelectron. 33 (2012) 69–74.
W. Xiang, Y. Zhao, Z. Jiang, et al., J. Mater. Chem. A 6 (2018) 23366–23377.
doi: 10.1039/c8ta09034c
T. Nathan-Walleser, I.M. Lazar, M. Fabritius, et al., Adv. Funct. Mater. 24 (2014) 4706–4716.
doi: 10.1002/adfm.201304151
C. Zhu, T. Liu, F. Qian, et al., Nano Lett. 16 (2016) 3448–3456.
doi: 10.1021/acs.nanolett.5b04965
Y. Jiang, Z. Xu, T. Huang, et al., Adv. Funct. Mater. 28 (2018) 1707024.
doi: 10.1002/adfm.201707024
B. Yao, S. Chandrasekaran, H. Zhang, et al., Adv. Mater. 32 (2020) 1906652.
doi: 10.1002/adma.201906652
Z. Qi, J. Ye, W. Chen, et al., Adv. Mater. Technol. 3 (2018) 1800053.
doi: 10.1002/admt.201800053
J. Zhao, Y. Zhang, X. Zhao, et al., Adv. Funct. Mater. 29 (2019) 1900809.
doi: 10.1002/adfm.201900809
W. Yang, J. Yang, J.J. Byun, et al., Adv. Mater. 31 (2019) 1902725.
doi: 10.1002/adma.201902725
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, ACS Nano 14 (2020) 640–650.
doi: 10.1021/acsnano.9b07325
Z. Fan, J. Jin, C. Li, et al., ACS Nano 15 (2021) 3098–3107.
doi: 10.1021/acsnano.0c09646
L. Yu, Z. Fan, Y. Shao, et al., Adv. Energy Mater. 9 (2019) 1901839.
doi: 10.1002/aenm.201901839
J.D. Cain, A. Azizi, K. Maleski, et al., ACS Nano 13 (2019) 12385–12392.
doi: 10.1021/acsnano.9b05088
K. Shen, J. Ding, S. Yang, Adv. Energy Mater. 8 (2018) 1800408.
doi: 10.1002/aenm.201800408
J. Cai, J. Jin, Z. Fan, et al., Adv. Mater. 32 (2020) 2005967.
doi: 10.1002/adma.202005967
Z. Peng, J. Huang, Q. He, L. Tan, Y. Chen, J. Mater. Chem. A 9 (2021) 4273–4280.
doi: 10.1039/d0ta11536c
T. Wang, L. Li, X. Tian, et al., Electrochim. Acta 319 (2019) 245–252.
W. Wang, Y. Zhang, L. Zhang, et al., Mater. Lett. 213 (2018) 100–103.
B. Yao, S. Chandrasekaran, J. Zhang, et al., Joule 3 (2019) 459–470.
T. Liu, Y. Chen, L. Chen, Acta Metall. Sin. (English Lett. )34 (2021) 85–97.
M. Kalaj, K.C. Bentz, S. Ayala, et al., Chem. Rev. 120 (2020) 8267–8302.
doi: 10.1021/acs.chemrev.9b00575
S. Lawson, A.A. Alwakwak, A.A. Rownaghi, F. Rezaei, ACS Appl. Mater. Interfaces 12 (2020) 56108–56117.
doi: 10.1021/acsami.0c18720
L. Zhong, J. Chen, Z. Ma, et al., Nanoscale 12 (2020) 24437–24449.
doi: 10.1039/d0nr06297a
Y. Ying, M.P. Browne, M. Pumera, Sustain. Energy Fuels 4 (2020) 3732–3738.
doi: 10.1039/d0se00503g
K. Ghosh, S. Ng, C. Iffelsberger, M. Pumera, Chem. Eur. J. 26 (2020) 15746–15753.
doi: 10.1002/chem.202004250
P. dos Santos, S.J. Rowley-Neale, A.G.M. Ferrari, J.A. Bonacin, C.E. Banks, ChemElectroChem 6 (2019) 5633–5641.
D.W. Yee, M.A. Citrin, Z.W. Taylor, et al., Adv. Mater. Technol. 6 (2021) 2000791.
doi: 10.1002/admt.202000791
X. Tian, K. Tang, H. Jin, et al., Carbon N Y 155 (2019) 562–569.
H.A. Figueredo-Rodríguez, R.D. McKerracher, M. Insausti, et al., J. Electrochem. Soc. 164 (2017) A1148.
doi: 10.1149/2.0711706jes
M.S. Saleh, J. Li, J. Park, R. Panat, Addit. Manuf. 23 (2018) 70–78.
C. Shen, T. Wang, X. Xu, X. Tian, Electrochim. Acta 349 (2020) 136331.
X. Li, H. Li, X. Fan, X. Shi, J. Liang, Adv. Energy Mater. 10 (2020) 1903794.
doi: 10.1002/aenm.201903794
T. Wang, X. Tian, L. Li, et al., J. Mater. Chem. A 8 (2020) 1749–1756.
doi: 10.1039/c9ta11386j
Y. Zhang, T. Ji, S. Hou, et al., J. Power Sources 403 (2018) 109–117.
doi: 10.1117/12.2309745
D. Kong, Y. Wang, S. Huang, et al., ACS Nano 14 (2020) 9675–9686.
doi: 10.1021/acsnano.0c01157
K. Tang, H. Ma, Y. Tian, et al., Virtual Phys. Prototyp. 15 (2020) 511–519.
doi: 10.1080/17452759.2020.1842619
F. Zhou, S. Han, Q. Qian, Y. Zhu, Chem. Phys. Lett. 728 (2019) 6–13.
T. Gao, Z. Zhou, J. Yu, et al., Adv. Energy Mater. 9 (2019) 1802578.
doi: 10.1002/aenm.201802578
K. Shen, H. Mei, B. Li, J. Ding, S. Yang, Adv. Energy Mater. 8 (2018) 1701527.
doi: 10.1002/aenm.201701527
X. Tang, C. Zhu, D. Cheng, et al., Adv. Funct. Mater. 28 (2018) 1805057.
doi: 10.1002/adfm.201805057
A. Azhari, E. Marzbanrad, D. Yilman, E. Toyserkani, M.A. Pope, Carbon N Y 119 (2017) 257–266.
V.G. Rocha, E. García-Tuñón, C. Botas, et al., ACS Appl. Mater. Interfaces 9 (2017) 37136–37145.
doi: 10.1021/acsami.7b10285
L. Yu, W. Li, C. Wei, et al., Nano-Micro Lett. 12 (2020) 143.
doi: 10.1109/icmcce51767.2020.00039
S. Ma, Y. Shi, Y. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019) 29960–29969.
doi: 10.1021/acsami.9b09498
Y. Shao, J.H. Fu, Z. Cao, et al., ACS Nano 14 (2020) 7308–7318.
doi: 10.1021/acsnano.0c02585
Y. Chao, Y. Ge, Z. Chen, et al., ACS Appl. Mater. Interfaces 13 (2021) 7285–7296.
doi: 10.1021/acsami.0c21439
B. Yao, H. Peng, H. Zhang, et al., Nano Lett. 21 (2021) 3731–3737.
doi: 10.1021/acs.nanolett.0c04780
W. Kang, L. Zeng, S. Ling, R. Yuan, C. Zhang, Energy Storage Mater. 35 (2021) 345–352.
H. Xiao, Z. Wu, L. Chen, et al., ACS Nano 11 (2017) 7284–7292.
doi: 10.1021/acsnano.7b03288
S. Liu, X. Shi, X. Li, et al., Nanoscale 10 (2018) 20096–20107.
doi: 10.1039/c8nr06369a
J. Zhao, Y. Zhang, Y. Huang, et al., Adv. Sci. 5 (2018) 1801114.
doi: 10.1002/advs.201801114
Z. Fan, C. Wei, L. Yu, et al., ACS Nano 14 (2020) 867–876.
doi: 10.1021/acsnano.9b08030
C.W. Foster, G. Zou, Y. Jiang, et al., Batter. Supercaps 2 (2019) 448–453.
doi: 10.1002/batt.201800148
L. Airoldi, U. Anselmi-Tamburini, B. Vigani, et al., Batter. Supercaps 3 (2020) 1040–1050.
doi: 10.1002/batt.202000058
K. Shen, B. Li, S. Yang, Energy Storage Mater. 24 (2020) 670–675.
C. Wei, M. Tian, M. Wang, et al., ACS Nano 14 (2020) 16073–16084.
doi: 10.1021/acsnano.0c07999
X. Lin, J. Wang, X. Gao, et al., Chem. Mater. 32 (2020) 3018–3027.
doi: 10.1021/acs.chemmater.9b05360
M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5 (2013) 72–88.
N. Yu, H. Yin, W. Zhang, et al., Adv. Energy Mater. 6 (2016) 1501458.
doi: 10.1002/aenm.201501458
G.F. Hawes, S. Rehman, M.A. Pope, Curr. Opin. Electrochem. 20 (2020) 36–45.
C. Du, N. Pan, Nanotechnology 17 (2006) 5314.
doi: 10.1088/0957-4484/17/21/005
D.N. Futaba, K. Hata, T. Yamada, et al., Nat. Mater. 5 (2006) 987–994.
doi: 10.1038/nmat1782
X. Gao, X. Yang, Q. Sun, et al., Energy Storage Mater. 24 (2020) 682–688.
N.A. Kyeremateng, T. Brousse, D. Pech, Nat. Nanotechnol. 12 (2017) 7–15.
doi: 10.1038/nnano.2016.196
I. Sullivan, H. Zhang, C. Zhu, et al., ACS Appl. Mater. Interfaces 13 (2021) 20260–20268.
doi: 10.1021/acsami.1c05648
S. Ng, C. Iffelsberger, Z. Sofer, M. Pumera, Adv. Funct. Mater. 30 (2020) 1910193.
doi: 10.1002/adfm.201910193
C. Iffelsberger, S. Ng, M. Pumera, Appl. Mater. Today 20 (2020) 100654.
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
Yuexi Guo , Zhaoyang Li , Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005