Electrochemical deposition of uranium oxide with an electrocatalytically active electrode using double potential step technique
-
* Corresponding author.
E-mail address: yqianecit@163.com (Y. Qian).
Citation: Jie Huang, Zhirong Liu, Dejuan Huang, Tianxiang Jin, Yong Qian. Electrochemical deposition of uranium oxide with an electrocatalytically active electrode using double potential step technique[J]. Chinese Chemical Letters, ;2022, 33(8): 3762-3766. doi: 10.1016/j.cclet.2021.11.008
J.A. Kazery, G. Proctor, S.L. Larson, et al., ACS Earth Space Chem. 5 (2021) 356–364.
doi: 10.1021/acsearthspacechem.0c00326
P. Kumari, G. Kumar, S. Prasher, et al., Environ. Earth Sci. 80 (2021) 271.
doi: 10.1007/s12665-021-09574-x
S. Shi, X. Tang, Y. Yang, Z. Liu, J. Radioanal. Nucl. Chem. 328 (2021) 507–517.
doi: 10.1007/s10967-021-07689-w
M.L.B. d. Moraes, A.C.Q. Ladeira, Chemosphere 277 (2021) 130131.
doi: 10.1016/j.chemosphere.2021.130131
Y. Shen, N. Chu, S. Yang, et al., Ind. Eng. Chem. Res. 58 (2019) 18329–18335.
doi: 10.1021/acs.iecr.9b03580
D.C. Wang, Y.H. Li, D. Li, Y.Z. Xia, J.P. Zhang, Renew. Sustain. Energy Rev. 14 (2010) 344–353.
doi: 10.1016/j.rser.2009.08.001
N. Tang, J. Liang, C. Niu, et al., J. Mater. Chem. A 8 (2020) 7588–7625.
doi: 10.1039/C9TA14082D
L. Li, R. Ma, T. Wen, et al., Sci. Total Environ. 694 (2019) 133697.
doi: 10.1016/j.scitotenv.2019.133697
C. Liu, T. Wu, P.C. Hsu, et al., ACS Nano 13 (2019) 6431–6437.
doi: 10.1021/acsnano.8b09301
C. Liu, P.C. Hsu, J. Xie, et al., Nat. Energy 2 (2017) 17007.
doi: 10.1038/nenergy.2017.7
L. Chen, D.G. Tong, Sep. Purif. Technol. 250 (2020) 117175.
doi: 10.1016/j.seppur.2020.117175
Y. Oren, Desalination 228 (2008) 10–29.
doi: 10.1016/j.desal.2007.08.005
W. Wang, S. Liu, Y. Zhou, et al., Sep. Purif. Technol. 276 (2021) 119235.
doi: 10.1016/j.seppur.2021.119235
J. Zhou, H. Zhou, Y. Zhang, et al., Chem. Eng. J. 398 (2020) 125460.
doi: 10.1016/j.cej.2020.125460
J. Gamaethiralalage, K. Singh, S. Sahin, et al., Energy Environ. Sci. 14 (2021) 1095–1120.
doi: 10.1039/D0EE03145C
H. Liu, J. Zhang, X. Xu, Q. Wang, Chem. Eur. J. 26 (2020) 4403–4409.
doi: 10.1002/chem.201905606
P. Xue, S. Jiang, W. Li, et al., Bioprocess Biosyst. Eng. 44 (2021) 1119–1130.
doi: 10.1007/s00449-021-02511-z
D. Yuan, S. Zhang, J. Tan, et al., Sep. Purif. Technol. 237 (2020) 116379.
doi: 10.1016/j.seppur.2019.116379
D. Wang, F. Xu, J. Hu, M. Lin, Mater. Sci. Eng. C 71 (2017) 1086–1089.
doi: 10.1016/j.msec.2016.11.023
S. Liu, C. Luo, L. Chai, J. Ren, J. Solid State Electrochem. 25 (2021) 1975–1985.
doi: 10.1007/s10008-021-04968-0
Z.Y. Han, L.J. Huang, H.J. Qu, et al., J. Mater. Sci. 56 (2021) 9545–9574.
doi: 10.1007/s10853-021-05873-7
M. Pumera, Electrochem. Commun. 36 (2013) 14–18.
doi: 10.1016/j.elecom.2013.08.028
W. Wang, J. Luo, W. Wei, et al., Chemosphere 271 (2021) 129531.
doi: 10.1016/j.chemosphere.2021.129531
A.V. Ramya, N. Joseph, M. Balachandran, Nanobiotechnol. Rep. 16 (2021) 183–187.
doi: 10.1134/S2635167621020130
H. Nan, L. Zhu, H. Liu, W. Li, Appl. Surf. Sci. 355 (2015) 1215–1221.
doi: 10.1016/j.apsusc.2015.07.167
Z. Zhang, Z. Dong, X. Wang, et al., Chem. Eng. J. 370 (2019) 1376–1387.
A.M. Puziy, O.I. Poddubnaya, R.P. Socha, J. Gurgul, M. Wisniewski, Carbon 46 (2008) 2113–2123.
doi: 10.1016/j.carbon.2008.09.010
T. Jin, J. Chen, C. Wang, Y. Qian, L. Lu, J. Mater. Sci. 55 (2020) 12103–12113.
K. Narthana, G. Durai, P. Kuppusami, et al., Int. J. Energy Res. 45 (2021) 9983–9998.
J. Chen, C. Lin, M. Zhang, T. Jin, Y. Qian, Chem. Electro. Chem. 7 (2020) 3311–3318.
S.K. Guin, A.S. Ambolikar, J.V. Kamat, RSC Adv. 5 (2015) 59437–59446.
Y. Peled, E. Krent, N. Tal, H. Tobias, D. Mandler, Anal. Chem. 87 (2015) 768–776.
E.J. Kelly, H.R. Bronstein, J. Electrochem. Soc. 131 (1984) 2232–2238.
J. Xiao, Y. Jing, Y. Yao, X. Wang, Y. Jia, J. Mol. Liq. 277 (2019) 843–855.
S. Mishra, J. Dwivedi, A. Kumar, N. Sankararamakrishnan, New J. Chem. 40 (2016) 1213–1221.
C. Jégou, R. Caraballo, S. Peuget, et al., J. Nucl. Mater. 405 (2010) 235–243.
D. Manara, B. Renker, J. Nucl. Mater. 321 (2003) 233–237.
Wenhao Feng , Chunli Liu , Zheng Liu , Huan Pang . In-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
Jie Zhou , Chuanxiang Zhang , Changchun Hu , Shuo Li , Yuan Liu , Zhu Chen , Song Li , Hui Chen , Rokayya Sami , Yan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Jinlong Li , Ruixin Li , Jiahui Liu , Ji-Quan Liu , Jia Xu , Xianglin Zhou , Yefan Zhang , Kairui Wang , Lin Lei , Gang Xie , Fengmei Wang , Ying Yang , Liping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Rui Liu , Jinbo Pang , Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
Lishan Xiong , Xinyuan Li , Xiaojie Lu , Zhendong Zhang , Yan Zhang , Wen Wu , Chenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384
Yang Yang , Jing-Li Luo , Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269