Single-cell metabolite analysis on a microfluidic chip
-
* Corresponding author.
E-mail address: liangql@tsinghua.edu.cn (Q. Liang).
1 These authors contributed equally to this work.
Citation: Chenlong Wang, Wanting Hu, Liandi Guan, Xiaoping Yang, Qionglin Liang. Single-cell metabolite analysis on a microfluidic chip[J]. Chinese Chemical Letters, ;2022, 33(6): 2883-2892. doi: 10.1016/j.cclet.2021.10.006
S.S. Rubakhin, E.V. Romanova, P. Nemes, et al., Nat. Methods 8 (2011) S20–S29
doi: 10.1038/nmeth.1549
Y.F. Liu, X.Y. Chen, Y.Q. Zhang, et al., Analyst 144 (2019) 846–858
doi: 10.1039/c8an01503a
W. Cong, Q. Liang, L. Li, et al., Talanta 89 (2012) 91–98
doi: 10.1016/j.talanta.2011.11.071
T. Zhao, H. Zhang, T. Zhao, et al., J. Pharm. Biomed. Anal. 60 (2012) 32–43
doi: 10.1016/j.jpba.2011.11.010
L. Li, W. Wang, M. Ding, et al., Anal. Chem. 88 (2016) 6734–6742
doi: 10.1021/acs.analchem.6b01008
B. Shrestha, Methods Mol. Biol. 2064 (2020) 1–8
doi: 10.1007/978-1-4939-9831-9_1
X. Ai, Y. Wu, W. Lu, et al., Adv. Sci. (Weinh) 7 (2020) 2000111
doi: 10.1002/advs.202000111
M.F. Abate, S. Jia, M.G. Ahmed, et al., Small 15 (2019) e1804890
doi: 10.1002/smll.201804890
X.L. Guo, Y. Wei, Q. Lou, et al., Anal. Chem. 90 (2018) 5810–5817
doi: 10.1021/acs.analchem.8b00343
X. Liu, Y. Jia, Z. Han, et al., Angew. Chem. Int. Ed. Engl. 60 (2021) 12319–12322
doi: 10.1002/anie.202101293
M.R. Mashego, K. Rumbold, M. De Mey, et al., Biotechnol. Lett. 29 (2007) 1–16
doi: 10.1007/s10529-006-9218-0
L.L. Li, Y.Q. Li, Z.X. Shao, et al., Anal. Chem. 90 (2018) 11899–11907
doi: 10.1021/acs.analchem.8b02070
A. Ali, Y. Abouleila, Y. Shimizu, et al., TrAC Trends Anal. Chem. 120 (2019) 115436–115446
doi: 10.1016/j.trac.2019.02.033
D. Gao, H.X. Liu, Y.Y. Jiang, et al., TrAC Trends Anal. Chem. 35 (2012) 150–164
doi: 10.1016/j.trac.2012.02.008
J. Wu, S.Q. Wang, Q.S. Chen, et al., Anal. Chim. Acta 892 (2015) 132–139
doi: 10.1016/j.aca.2015.08.020
J. Wu, M.S. Jie, X.L. Dong, et al., Rapid Commun. Mass Spectrom. 30 (2016) 80–86
doi: 10.1002/rcm.7643
F. Zhang, D. Gao, Q.L. Liang, Chin. J. Anal. Chem. 44 (2016) 1942–1949
doi: 10.1016/S1872-2040(16)60982-9
R. Xie, Z. Liang, Y. Ai, et al., Nat. Protoc. 16 (2020) 937–964
doi: 10.3390/sym12060937
Y. Ai, R. Xie, J. Xiong, et al., Small 16 (2020) e1903940
doi: 10.1002/smll.201903940
Y.J. Ai, F. Zhang, C.L. Wang, et al., TrAC Trends Anal. Chem. 117 (2019) 215–230
doi: 10.1016/j.trac.2019.06.026
P.C.H. Li, D.J. Harrison, Anal. Chem. 69 (1997) 1564–1568
doi: 10.1021/ac9606564
J.R. Kraly, R.E. Holcomb, Q. Guan, et al., Anal. Chim. Acta 653 (2009) 23–35
doi: 10.1016/j.aca.2009.08.037
K.D. Duncan, J. Fyrestam, I. Lanekoff, Analyst 144 (2019) 782–793
doi: 10.1039/c8an01581c
U. Vermesh, O. Vermesh, J. Wang, et al., Angew. Chem. Int. Ed. 50 (2011) 7378–7380
doi: 10.1002/anie.201102249
C.S. Chen, M. Mrksich, S. Huang, et al., Science 276 (1997) 1425–1428
doi: 10.1126/science.276.5317.1425
A.R. Wheeler, W.R. Throndset, R.J. Whelan, et al., Anal. Chem. 75 (2003) 3581–3586
doi: 10.1021/ac0340758
X.J. Li, P.C.H. Li, Anal. Chem. 77 (2005) 4315–4322
doi: 10.1021/ac048240a
K.H. Chung, C.A. Rivet, M.L. Kemp, et al., Anal. Chem. 83 (2011) 7044–7052
doi: 10.1021/ac2011153
S. Kobel, A. Valero, J. Latt, et al., Lab Chip 10 (2010) 857–863
doi: 10.1039/b918055a
X. Ai, Q. Liang, M. Luo, et al., Lab Chip 12 (2012) 4516–4522
doi: 10.1039/c2lc40638a
W.H. Sun, Y. Wei, X.L. Guo, et al., Anal. Chem. 92 (2020) 8759–8767
doi: 10.1021/acs.analchem.0c00007
X. Xu, J. Wang, L. Wu, et al., Small 16 (2020) e1903905
doi: 10.1002/smll.201903905
Z. Zhu, C.J. Yang, Acc. Chem. Res. 50 (2017) 22–31
doi: 10.1021/acs.accounts.6b00370
Y.Q. Li, L.L. Li, Z.X. Liu, et al., Microfluid. Nanofluid. 20 (2016) 97–106
doi: 10.1007/s10404-016-1762-x
S. Yamamura, H. Kishi, Y. Tokimitsu, et al., Anal. Chem. 77 (2005) 8050–8056
doi: 10.1021/ac0515632
C.S. Liu, J.J. Liu, D. Gao, et al., Anal. Chem. 82 (2010) 9418–9424
doi: 10.1021/ac102094r
C.M. Ackerman, C. Myhrvold, S.G. Thakku, et al., Nature 582 (2020) 277–282
doi: 10.1038/s41586-020-2279-8
T.E. Miller, T. Beneyton, T. Schwander, et al., Science 368 (2020) 649–654
doi: 10.1126/science.aaz6802
S.C. Hur, N.K. Henderson-MacLennan, E.R.B. McCabe, et al., Lab Chip 11 (2011) 912–920
doi: 10.1039/c0lc00595a
D. Pekin, Y. Skhiri, J.C. Baret, et al., Lab Chip 11 (2011) 2156–2166
doi: 10.1039/c1lc20128j
T. Beneyton, S. Thomas, A.D. Griffiths, et al., Microb. Cell Fact. 16 (2017) 18–32
doi: 10.1186/s12934-017-0629-5
M. Chabert, J.L. Viovy, Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 3191–3196
doi: 10.1073/pnas.0708321105
J.F. Edd, D. Di Carlo, K.J. Humphry, et al., Lab Chip 8 (2008) 1262–1264
doi: 10.1039/b805456h
F. Del Ben, M. Turetta, G. Celetti, et al., Angew. Chem. Int. Ed. 55 (2016) 8581–8584
doi: 10.1002/anie.201602328
S. Deshpande, Y. Caspi, A.E.C. Meijering, et al., Nat. Commun. 7 (2016) 10447
doi: 10.1038/ncomms10447
S. Deshpande, C. Dekker, Nat. Protoc. 13 (2018) 856–874
doi: 10.1038/nprot.2017.160
L. Armbrecht, G. Gabernet, F. Kurth, et al., Lab Chip 17 (2017) 2933–2940
doi: 10.1039/C7LC00505A
T. Thorsen, S.J. Maerkl, S.R. Quake, Science 298 (2002) 580–584
doi: 10.1126/science.1076996
H.A. Pohl, J. Appl. Phys. 22 (1951) 869–871
doi: 10.1063/1.1700065
M. Khine, C. Ionescu-Zanetti, A. Blatz, et al., Lab Chip 7 (2007) 457–462
doi: 10.1039/b614356c
P. Padhy, M.A. Zaman, M.A. Jensen, et al., Electrophoresis 42 (2021) 1079–1092
doi: 10.1002/elps.202000328
Y. Zhang, N.T. Nguyen, Lab Chip 17 (2017) 994–1008
doi: 10.1039/C7LC00025A
G.Y. Huang, M.X. Li, Q.Z. Yang, et al., ACS Appl. Mater. Interfaces 9 (2017) 1155–1166
doi: 10.1021/acsami.6b09017
K. Zhang, Q.L. Liang, S. Ma, et al., Lab Chip 9 (2009) 2992–2999
doi: 10.1039/b906229g
K. Zhang, Q.L. Liang, X.N. Ai, et al., Lab Chip 11 (2011) 1271–1275
doi: 10.1039/c0lc00484g
N. Pamme, Curr. Opin. Chem. Biol. 16 (2012) 436–443
doi: 10.1016/j.cbpa.2012.05.181
W.D. Wang, J.V.I. Timonen, A. Carlson, et al., Nature 559 (2018) 77–97
doi: 10.1038/s41586-018-0250-8
J. Guo, D. Wang, Q. Sun, et al., Adv. Mater. Interfaces 6 (2019) 1900653–1900662
doi: 10.1002/admi.201900653
U. Banerjee, A.K. Sen, Soft Matter 14 (2018) 2915–2922
doi: 10.1039/C7SM02312J
J. Vialetto, M. Hayakawa, N. Kavokine, et al., Angew. Chem. Int. Ed. 56 (2017) 16565–16570
doi: 10.1002/anie.201710668
M.M. Wang, E. Tu, D.E. Raymond, et al., Nat. Biotechnol. 23 (2005) 83–87
doi: 10.1038/nbt1050
J.L. Killian, F. Ye, M.D. Wang, Cell 175 (2018) 1445–1448
doi: 10.1016/j.cell.2018.11.019
I.A. Favre-Bulle, A.B. Stilgoe, E.K. Scott, et al., Nanophotonics 8 (2019) 1023–1040
doi: 10.1515/nanoph-2019-0055
N. Vogt, Nat. Methods 18 (2021) 333–333
doi: 10.1038/s41592-021-01121-7
R.P. Badman, F. Ye, M.D. Wang, Curr. Opin. Chem. Biol. 53 (2019) 158–166
doi: 10.1016/j.cbpa.2019.09.008
C. Probst, A. Grunberger, W. Wiechert, et al., J. Microbiol. Methods 95 (2013) 470–476
doi: 10.1016/j.mimet.2013.09.002
K.W. Huang, Y.C. Wu, J.A. Lee, et al., Lab Chip 13 (2013) 3721–3727
doi: 10.1039/c3lc50607j
I. Sparkes, Curr. Opin. Plant Biol. 46 (2018) 55–61
doi: 10.1016/j.pbi.2018.07.010
H. Maruyama, K. Kotani, T. Masuda, et al., Microfluid. Nanofluid. 10 (2011) 1109–1117
doi: 10.1007/s10404-010-0739-4
Z.S. Yao, C.C. Kwan, A.W. Poon, Lab Chip 20 (2020) 601–613
doi: 10.1039/c9lc01026b
Y. Li, Z.Y. Guo, S.L. Qu, Opt. Lasers Eng. 55 (2014) 150–154
doi: 10.1016/j.optlaseng.2013.11.001
X.L. Wang, S.X. Chen, M. Kong, et al., Lab Chip 11 (2011) 3656–3662
doi: 10.1039/c1lc20653b
A. Kotnala, Y. Zheng, J.P. Fu, et al., Lab Chip 17 (2017) 2125–2134
doi: 10.1039/C7LC00286F
M. Werner, F. Merenda, J. Piguet, et al., Lab Chip 11 (2011) 2432–2439
doi: 10.1039/c1lc20181f
L.H. Lin, X.L. Peng, X.L. Wei, et al., ACS Nano 11 (2017) 3147–3154
doi: 10.1021/acsnano.7b00207
T. Fang, W.H. Shang, C. Liu, et al., Anal. Chem. 91 (2019) 9932–9939
doi: 10.1021/acs.analchem.9b01604
T. Fang, W.H. Shang, C. Liu, et al., Anal. Chem. 92 (2020) 10433–10441
doi: 10.1021/acs.analchem.0c00912
T.L. Min, P.J. Mears, L.M. Chubiz, et al., Nat. Methods 6 (2009) 831-871
doi: 10.1038/nmeth.1380
S. Keen, A. Yao, J. Leach, et al., Lab Chip 9 (2009) 2059–2062
doi: 10.1039/b900934e
H. Mushfique, J. Leach, H.B. Yin, et al., Anal. Chem. 80 (2008) 4237–4240
doi: 10.1021/ac8002006
A. Masuda, H. Takao, F. Shimokawa, et al., Sci. Rep. 11 (2021) 7961
doi: 10.1038/s41598-021-87238-3
X.Y. Ding, S.C.S. Lin, B. Kiraly, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 11105–11109
doi: 10.1073/pnas.1209288109
P. Li, Z.M. Mao, Z.L. Peng, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 4970–4975
doi: 10.1073/pnas.1504484112
F. Guo, P. Li, J.B. French, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 43–48
doi: 10.1073/pnas.1422068112
J. Berg, Y.P. Hung, G. Yellen, Nat. Methods 6 (2009) 161–166
doi: 10.1038/nmeth.1288
K. Eyer, P. Kuhn, C. Hanke, et al., Lab Chip 12 (2012) 765–772
doi: 10.1039/C2LC20876H
M.A. McClain, C.T. Culbertson, S.C. Jacobson, et al., Anal. Chem. 75 (2003) 5646–5655
doi: 10.1021/ac0346510
J. Gao, X.F. Yin, Z.L. Fang, Lab Chip 4 (2004) 47–52
doi: 10.1039/b310552k
E.C. Metto, K. Evans, P. Barney, et al., Anal. Chem. 85 (2013) 10188–10195
doi: 10.1021/ac401665u
H.S. Moon, K. Kwon, S.I. Kim, et al., Lab Chip 11 (2011) 1118–1125
doi: 10.1039/c0lc00345j
T.L. Zhang, Z.Y. Hong, S.Y. Tang, et al., Lab Chip 20 (2020) 35–53
doi: 10.1039/c9lc00785g
A. Khamenehfar, M.K. Gandhi, Y.C. Chen, et al., Anal. Chem. 88 (2016) 5680–5688
doi: 10.1021/acs.analchem.5b04446
Q.L. Li, P.L. Chen, Y.Y. Fan, et al., Anal. Chem. 88 (2016) 8610–8616
doi: 10.1021/acs.analchem.6b01775
S.L. Zhao, X.T. Li, Y.M. Liu, Anal. Chem. 81 (2009) 3873–3878
doi: 10.1021/ac900391u
L. Chen, X. Zhao, J.E. Wu, et al., Food Res. Int. 128 (2020) 108796
doi: 10.1016/j.foodres.2019.108796
A.H. Emwas, R. Roy, R.T. McKay, et al., Metabolites 9 (2019) 123
doi: 10.3390/metabo9070123
A. Vignoli, V. Ghini, G. Meoni, et al., Angew. Chem. Int. Ed. 58 (2019) 968–994
doi: 10.1002/anie.201804736
J.L. Wolfender, J.M. Nuzillard, J.J.J. van der Hooft, et al., Anal. Chem. 91 (2019) 704–742
doi: 10.1021/acs.analchem.8b05112
W. Lu, X. Su, M.S. Klein, et al., Metabolite measurement: pitfalls to avoid and practices to follow, in: R.D. Kornberg (ed. ) Annu. Rev. Biochem., Vol86, Annual Reviews, Palo Alto, 2017, pp. 277–304
W.B. Dunn, D.I. Broadhurst, H.J. Atherton, et al., Chem. Soc. Rev. 40 (2011) 387–426
doi: 10.1039/B906712B
S.K. Bharti, R. Roy, TrAC Trends Anal. Chem. 35 (2012) 5–26
doi: 10.1016/j.trac.2012.02.007
A.W. Sternson, R. Mccreery, B. Feinberg, et al., J. Electroanal. Chem. 46 (1973) 313–321
doi: 10.1016/S0022-0728(73)80139-1
X.X. Cai, N. Klauke, A. Glidle, et al., Anal. Chem. 74 (2002) 908–914
doi: 10.1021/ac010941+
J.H. Park, Y.S. Song, J.G. Ha, et al., Sens. Actuators B Chem. 188 (2013) 1300–1305
doi: 10.1016/j.snb.2013.08.010
Y.S. Song, S.J. Bai, Biotechnol. Lett. 36 (2014) 2185–2191
doi: 10.1007/s10529-014-1594-2
A.D. Townsend, R.S. Sprague, R.S. Martin, Electroanalysis 31 (2019) 1426–1432
W. Cheng, N. Klauke, H. Sedgwick, et al., Lab Chip 6 (2006) 1424–1431
doi: 10.1039/b608202e
R. Zenobi, Science 342 (2013) 1243259
doi: 10.1126/science.1243259
S.F. Mao, D. Gao, W. Liu, et al., Lab Chip 12 (2012) 219–226
doi: 10.1039/C1LC20678H
S.F. Mao, J. Zhang, H.F. Li, et al., Anal. Chem. 85 (2013) 868–876
doi: 10.1021/ac303164b
J. Zhang, J. Wu, H.F. Li, et al., Biosens. Bioelectron. 68 (2015) 322–328
doi: 10.1016/j.bios.2015.01.013
F.M. Chen, L.Y. Lin, J. Zhang, et al., Anal. Chem. 88 (2016) 4354–4360
doi: 10.1021/acs.analchem.5b04749
Z. Jiang, J. Sun, Q. Liang, et al., Talanta 84 (2011) 298–304
doi: 10.1016/j.talanta.2011.01.015
H.Y. Zhang, X. Chen, P. Hu, et al., Talanta 79 (2009) 254
doi: 10.1016/j.talanta.2009.03.045
Z.Y. He, Q.S. Chen, F.M. Chen, et al., Chem. Sci. 7 (2016) 5448–5452
doi: 10.1039/C6SC00215C
A.E. Clark, E.J. Kaleta, A. Arora, et al., Clin. Microbiol. Rev. 26 (2013) 547–603
doi: 10.1128/CMR.00072-12
M.A. Yang, R. Nelson, A. Ros, Anal. Chem. 88 (2016) 6672-6679
doi: 10.1021/acs.analchem.5b03419
Q. Li, F. Tang, X.M. Huo, et al., Anal. Chem. 91 (2019) 8115–8122
doi: 10.1021/acs.analchem.9b00344
M. Zhong, C.Y. Lee, C.A. Croushore, et al., Lab Chip 12 (2012) 2037–2045
doi: 10.1039/c2lc21085a
A. Amantonico, P.L. Urban, S.R. Fagerer, et al., Anal. Chem. 82 (2010) 7394–7400
doi: 10.1021/ac1015326
J.B. Hu, Y.C. Chen, P.L. Urban, Anal. Chem. 84 (2012) 5110–5116
doi: 10.1021/ac300903x
O. Guillaume-Gentil, T. Rey, P. Kiefer, et al., Anal. Chem. 89 (2017) 5017–5023
doi: 10.1021/acs.analchem.7b00367
J.S. Mellors, K. Jorabchi, L.M. Smith, et al., Anal. Chem. 82 (2010) 967–973
doi: 10.1021/ac902218y
T. Lapainis, S.S. Rubakhin, J.V. Sweedler, Anal. Chem. 81 (2009) 5858–5864
doi: 10.1021/ac900936g
X.T. Li, S.L. Zhao, H.K. Hu, et al., J. Chromatogr. A 1451 (2016) 156–163
doi: 10.1504/IJEP.2016.079898
A. Korenaga, F. Chen, H. Li, et al., Talanta 162 (2017) 474–478
doi: 10.1016/j.talanta.2016.10.055
R.M. Onjiko, S.A. Moody, P. Nemes, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 6545–6550
doi: 10.1073/pnas.1423682112
W. Zhang, N. Li, L. Lin, et al., Small 16 (2019) e1903402
Z.W. Wei, X.C. Xiong, C.A. Guo, et al., Anal. Chem. 87 (2015) 11242–11248
doi: 10.1021/acs.analchem.5b02115
X.C. Zhang, Z.W. Wei, X.Y. Gong, et al., Sci. Rep. 6 (2016) 24730
doi: 10.1038/srep24730
F.J. Hartmann, D. Mrdjen, E. McCaffrey, et al., Nat. Biotechnol. 39 (2021) 186–197
doi: 10.1038/s41587-020-0651-8
Z.T. Xiao, Z.W. Dai, J.W. Locasale, Nat. Commun. 10 (2019) 12
doi: 10.1038/s41467-018-07943-y
D. Sengupta, G. Pratx, Mol. Cancer 15 (2016) 12
doi: 10.1186/s12943-016-0494-6
Xiaoxiao Wang , Bolun Wang , Fenfen Ji , Jie Yan , Jiacheng Fang , Doudou Zhang , Ji Xu , Jing Ji , Xinran Hao , Hemi Luan , Yanjun Hong , Shulan Qiu , Min Li , Zhu Yang , Wenlan Liu , Xiaodong Cai , Zongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Xinqiong Li , Guocheng Rao , Xi Peng , Chan Yang , Yanjing Zhang , Yan Tian , Xianghui Fu , Jia Geng . Direct detection of C9orf72 hexanucleotide repeat expansions by nanopore biosensor. Chinese Chemical Letters, 2024, 35(5): 109419-. doi: 10.1016/j.cclet.2023.109419
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
Yang Liu , Yan Liu , Kaiyin Yang , Zhiruo Zhang , Wenbo Zhang , Bingyou Yang , Hua Li , Lixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Yanjing Li , Jiayin Li , Yuqi Chang , Yunfeng Lin , Lei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
Ying Gao , Rong Zhou , Qiwen Wang , Shaolong Qi , Yuanyuan Lv , Shuang Liu , Jie Shen , Guocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521
Yuanzheng Wang , Chen Zhang , Shuyan Han , Xiaoli Kong , Changyun Quan , Jun Wu , Wei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578
Zheyi Li , Xiaoyang Liang , Zitong Qiu , Zimeng Liu , Siyu Wang , Yue Zhou , Nan Li . Ion-interferential cell cycle arrest for melanoma treatment based on magnetocaloric bimetallic-ion sustained release hydrogel. Chinese Chemical Letters, 2024, 35(11): 109592-. doi: 10.1016/j.cclet.2024.109592
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
Zhi Li , Shuya Pan , Yuan Tian , Shaowei Liu , Weifeng Wei , Jinlin Wang , Tianfeng Chen , Ling Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018