Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots
* Corresponding author.
E-mail address: zhengm@ciac.ac.cn(M. Zheng).
Citation: Pengli Gao, Zhigang Xie, Min Zheng. Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots[J]. Chinese Chemical Letters, ;2022, 33(4): 1659-1672. doi: 10.1016/j.cclet.2021.09.085
S.R. Ankireddy, J. Kim, Sens. Actuators B: Chem. 255 (2018) 3425-3433.
doi: 10.1016/j.snb.2017.09.172
V.M. Naik, D.B. Gunjal, A.H. Gore, et al., Anal. Bioanal. Chem. 412 (2020) 2993-3003.
doi: 10.1007/s00216-020-02550-7
G. Zuo, A. Xie, J. Li, et al., J. Phys. Chem. C 121 (2017) 26558-26565.
doi: 10.1021/acs.jpcc.7b10179
Y. Jiao, Y. Gao, Y. Meng, et al., ACS Appl. Mater. Interfaces 11 (2019) 16822-16829.
doi: 10.1021/acsami.9b01319
X. Xu, Y. Cen, G. Xu, et al., Biosens. Bioelectron. 131 (2019) 232-236.
doi: 10.1016/j.bios.2019.02.031
B. Kong, T. Yang, P. Hou, et al., Luminescence 35 (2020) 222-230.
doi: 10.1002/bio.3717
W. Yang, J. Ni, F. Luo, et al., Anal. Chem. 89 (2017) 8384-8390.
doi: 10.1021/acs.analchem.7b01705
C.C. Wang, P.T. Huang, H. Shang Kou, S.M. Wu, Sens. Actuators B: Chem. 311 (2020) 127916.
R.F. Zhu, W.Y. Huang, X.F. Ma, et al., Anal. Chim. Acta 1089 (2019) 131-143.
doi: 10.1016/j.aca.2019.08.061
N.K.R. Bogireddy, R. Cruz Silva, M.A. Valenzuela, V. Agarwal, J. Hazard. Mater. 386 (2020) 121643.
A. Singh, E. Eftekhari, J. Scott, et al., Sustain. Mater. Technol. 25 (2020) e00159.
N. Thongsai, P. Jaiyong, S. Kladsomboon, I. In, P. Paoprasert, Appl. Surf. Sci. 487 (2019) 1233-1244.
doi: 10.1016/j.apsusc.2019.04.269
I. Costas-Mora, V. Romero, I. Lavilla, C. Bendicho, Anal. Chem. 86 (2014) 4536-4543.
doi: 10.1021/ac500517h
L. Qiao, J. Wang, M. Zheng, Z. Xie, Anal. Methods 10 (2018) 1863-1869.
doi: 10.1039/C8AY00320C
Z. Guo, Y. Jiao, F. Du, et al., Talanta 216 (2020) 120943.
Y. Yang, W. Kong, H. Li, et al., ACS Appl. Mater. Interfaces 7 (2015) 27324-27330.
doi: 10.1021/acsami.5b08782
S. Kalytchuk, K. Polakova, Y. Wang, et al., ACS Nano 11 (2017) 1432-1442.
doi: 10.1021/acsnano.6b06670
Z. Mu, J. Hua, Y. Yang, Spectrochim. Acta A 224 (2020) 117444.
N. Wang, Y. Wang, T. Guo, et al., Biosens. Bioelectron. 85 (2016) 68-75.
doi: 10.1016/j.bios.2016.04.089
R. Wang, Y. Xu, T. Zhang, Y. Jiang, Anal. Methods 7 (2015) 1701-1706.
doi: 10.1039/C4AY02880E
X.W. Hua, Y.W. Bao, H.Y. Wang, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 2150-2161.
doi: 10.1039/C6NR06558A
F. Lin, C. Li, L. Dong, D. Fu, Z. Chen, Nanoscale 9 (2017) 9056-9064.
doi: 10.1039/C7NR01975K
X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, Nat. Biotechnol. 22 (2004) 969-976.
doi: 10.1038/nbt994
A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett. 4 (2004) 11-18.
doi: 10.1021/nl0347334
A.D. Yoffe, Adv. Phys. 50 (2001) 1-208.
M.C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293-346.
doi: 10.1021/cr030698+
K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107 (2003) 668-677.
M.V. Wolkin, J. Jorne, P.M. Fauchet, G. Allan, C. Delerue, Phys. Rev. Lett. 82 (1999) 197-200.
doi: 10.1103/PhysRevLett.82.197
M.S. Mauter, M. Elimelech, Environ. Sci. Technol. 42 (2008) 5843-5859.
doi: 10.1021/es8006904
A. Magrez, S. Kasas, V. Salicio, et al., Nano Lett. 6 (2006) 1121-1125.
doi: 10.1021/nl060162e
C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, ACS Nano 7 (2013) 2891-2897.
doi: 10.1021/nn401196a
S. Lu, L. Sui, J. Liu, et al., Adv Mater. 29 (2017) 1603443.
W. Li, Y. Liu, B. Wang, et al., Chin. Chem. Lett. 30 (2019) 2323-2327.
doi: 10.1016/j.cclet.2019.06.040
C. Ji, Y. Zhou, R.M. Leblanc, Z. Peng, ACS Sens. 5 (2020) 2724-2741.
doi: 10.1021/acssensors.0c01556
B. Wang, J. Li, Z. Tang, B. Yang, S. Lu, Sci. Bull. 64 (2019) 1285-1292.
doi: 10.1016/j.scib.2019.07.021
Y. Wang, G. Guo, J. Gao, et al., Chem. Mater. 32 (2020) 8146-8157.
doi: 10.1021/acs.chemmater.0c01391
Y. Han, B. Tang, L. Wang, et al., ACS Nano 14 (2020) 14761-14768.
doi: 10.1021/acsnano.0c01899
S. Chen, T. Sun, M. Zheng, Z. Xie, Adv. Funct. Mater. 30 (2020) 2004680.
X. Xu, R. Ray, Y. Gu, et al., J. Am. Chem. Soc. 126 (2004) 12736-12737.
doi: 10.1021/ja040082h
M. Li, T. Chen, J.J. Gooding, J. Liu, ACS Sens. 4 (2019) 1732-1748.
doi: 10.1021/acssensors.9b00514
Z. Peng, X. Han, S. Li, et al., Coordin. Chem. Rev. 343 (2017) 256-277.
doi: 10.1016/j.ccr.2017.06.001
M.L. Liu, B.B. Chen, C.M. Li, C.Z. Huang, Green Chem. 21 (2019) 449-471.
doi: 10.1039/C8GC02736F
V. Sharma, P. Tiwari, S.M. Mobin, J. Mater. Chem. B 5 (2017) 8904-8924.
doi: 10.1039/C7TB02484C
Y. Zhou, K.J. Mintz, S.K. Sharma, R.M. Leblanc, Langmuir 35 (2019) 9115-9132.
doi: 10.1021/acs.langmuir.9b00595
J. Lan, C. Liu, M. Gao, C. Huang, Talanta 144 (2015) 93-97.
doi: 10.1016/j.talanta.2015.05.071
H. Liu, T. Ye, C. Mao, Angew. Chem. Int. Ed. 46 (2007) 6473-6475.
doi: 10.1002/anie.200701271
L. Zheng, Y. Chi, Y. Dong, J. Lin, B. Wang, J. Am. Chem. Soc. 131 (2009) 4564-4565.
doi: 10.1021/ja809073f
F. Li, Y. Li, X. Yang, et al., Angew. Chem. Int. Ed. 57 (2018) 2377-2382.
doi: 10.1002/anie.201712453
L. Ðorđević, F. Arcudi, A. D'Urso, et al., Nat. Commun. 9 (2018) 3442.
Y. Su, Z. Xie, M. Zheng, J. Colloid Interface Sci. 573 (2020) 241-249.
doi: 10.1016/j.jcis.2020.04.004
W. Meng, X. Bai, B. Wang, et al., Energy Environ. Mater. 2 (2019) 172-192.
doi: 10.1002/eem2.12038
J. Zhang, Y. Yuan, G. Liang, S.H. Yu, Adv. Sci. 2 (2015) 1500002.
S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Chem. Commun. 48 (2012) 8835-8837.
doi: 10.1039/c2cc33796g
Y.P. Sun, B. Zhou, Y. Lin, et al., J. Am. Chem. Soc. 128 (2006) 7756-7757.
doi: 10.1021/ja062677d
Z.A. Qiao, Y. Wang, Y. Gao, et al., Chem. Commun. 46 (2010) 8812-8814.
doi: 10.1039/c0cc02724c
H. Li, X. He, Z. Kang, et al., Angew. Chem. Int. Ed. 49 (2010) 4430-4434.
doi: 10.1002/anie.200906154
Z.C. Yang, M. Wang, A.M. Yong, et al., Chem. Commun. 47 (2011) 11615-11617.
doi: 10.1039/c1cc14860e
M. Zheng, Y. Li, S. Liu, et al., ACS Appl. Mater. Interfaces 8 (2016) 23533-23541.
doi: 10.1021/acsami.6b07453
J. Wang, Y. Yang, G. Sun, M. Zheng, Z. Xie, Environ. Res. 177 (2019) 108621.
H. Zhu, X. Wang, Y. Li, et al., Chem. Commun. (2009) 5118-5120.
L. Qiao, T. Sun, X. Zheng, M. Zheng, Z. Xie, Mater. Sci. Eng. C 85 (2018) 1-6.
doi: 10.1016/j.msec.2017.12.011
R.S. Li, P.F. Gao, H.Z. Zhang, et al., Chem. Sci. 8 (2017) 6829-6835.
doi: 10.1039/C7SC01316G
M. Zheng, S. Ruan, S. Liu, et al., ACS Nano 9 (2015) 11455-11461.
doi: 10.1021/acsnano.5b05575
H. He, X. Zheng, S. Liu, et al., Nanoscale 10 (2018) 10991-10998.
doi: 10.1039/C8NR02643B
Y. Li, X. Zheng, X. Zhang, et al., Adv. Health Mater. 6 (2017) 1600924.
S. Miao, K. Liang, J. Zhu, et al., Nano Today 33 (2020) 100879.
A. Cai, Q. Wang, Y. Chang, X. Wang, J. Alloys Compd. 692 (2017) 183-189.
doi: 10.1016/j.jallcom.2016.09.030
S. Chandra, D. Laha, A. Pramanik, et al., Luminescence 31 (2016) 81-87.
doi: 10.1002/bio.2927
Y. Liu, W. Duan, W. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 12663-12672.
doi: 10.1021/acsami.6b15746
P. Gao, S. Liu, Y. Su, M. Zheng, Z. Xie, Bioconjug. Chem. 31 (2020) 646-655.
doi: 10.1021/acs.bioconjchem.9b00801
X. Li, S.P. Lau, L. Tang, et al., J. Mater. Chem. C 1 (2013) 7308-7313.
doi: 10.1039/c3tc31473a
W.S. Zou, W.L. Kong, Q.C. Zhao, et al., Microchim. Acta 186 (2019) 576.
Z. Qian, X. Shan, L. Chai, et al., ACS Appl. Mater. Interfaces 6 (2014) 6797-6805.
doi: 10.1021/am500403n
F. Li, T. Li, C. Sun, et al., Angew. Chem. Int. Ed. 56 (2017) 9910-9914.
doi: 10.1002/anie.201705989
Y. Liu, P. Wu, X. Wu, et al., Talanta 210 (2020) 120649.
S. Sun, Q. Guan, Y. Liu, et al., Chin. Chem. Lett. 30 (2019) 1051-1054.
doi: 10.1016/j.cclet.2019.01.014
Z. Ji, P. Ai, C. Shao, et al., ACS Biomater. Sci. Eng. 4 (2018) 2089-2094.
doi: 10.1021/acsbiomaterials.7b01008
X. Xi, X. Peng, C. Xiong, et al., Microchim. Acta 187 (2020) 383.
F. Ayaz, M. Ö. Alaş, M. Oǧuz, R. Genç, Mol. Biol. Rep. 46 (2019) 2405-2415.
doi: 10.1007/s11033-019-04701-1
Q. Xu, Y. Liu, R. Su, et al., Nanoscale 8 (2016) 17919-17927.
doi: 10.1039/C6NR05434J
H.X. Wang, J. Xiao, Z. Yang, et al., J. Mater. Chem. A 3 (2015) 11287-11293.
doi: 10.1039/C5TA02057C
L. Li, X. Wang, Z. Fu, F. Cui, Mater. Lett. 196 (2017) 300-303.
doi: 10.1016/j.matlet.2017.03.112
D. Sun, R. Ban, P.H. Zhang, et al., Carbon 64 (2013) 424-434.
Y. Wang, S.H. Kim, L. Feng, Anal. Chem. Acta 890 (2015) 134-142.
doi: 10.1016/j.aca.2015.07.051
D. Qu, M. Zheng, L. Zhang, et al., Sci. Rep. 4 (2014) 5294.
Q. Xu, P. Pu, J. Zhao, et al., J. Mater. Chem. A 3 (2015) 542-546.
doi: 10.1039/C4TA05483K
Y. Dong, H. Pang, H.B. Yang, et al., Angew. Chem. Int. Ed. 52 (2013) 7800-7804.
doi: 10.1002/anie.201301114
H. Ding, J.S. Wei, H.M. Xiong, Nanoscale 6 (2014) 13817-13823.
doi: 10.1039/C4NR04267K
H. Peng, J. Travas-Sejdic, Chem. Mater. 21 (2009) 5563-5565.
doi: 10.1021/cm901593y
J. Zhang, W. Shen, D. Pan, et al., N. J. Chem. 34 (2010) 591-593.
doi: 10.1039/b9nj00662a
H. Gonçalves, J.C.G. Esteves da Silva, J. Fluoresc. 20 (2010) 1023-1028.
doi: 10.1007/s10895-010-0652-y
A. Hao, X. Guo, Q. Wu, et al., J. Lumin. 170 (2015) 90-96.
M. Zheng, S. Liu, J. Li, et al., Adv. Mater. 26 (2014) 3554-3560.
doi: 10.1002/adma.201306192
M. Zheng, L. Qiao, Y. Su, P. Gao, Z. Xie, J. Mater. Chem. B 7 (2019) 3840-3845.
doi: 10.1039/C9TB00544G
Y. Su, S. Lu, P. Gao, M. Zheng, Z. Xie, Mater. Chem. Front. 3 (2019) 1747-1753.
doi: 10.1039/C9QM00257J
J. Zhang, M. Zheng, F. Zhang, et al., Chem. Mater. 28 (2016) 8825-8833.
doi: 10.1021/acs.chemmater.6b04894
J. Zhang, M. Zheng, Z. Xie, J. Mater. Chem. B 4 (2016) 5659-5663.
doi: 10.1039/C6TB01622G
Y. Li, W. Liu, C. Sun, et al., J. Colloid Interface Sci. 523 (2018) 226-233.
doi: 10.1016/j.jcis.2018.03.108
Z. Wang, P. Long, Y. Feng, C. Qin, W. Feng, RSC Adv. 7 (2017) 2810-2816.
doi: 10.1039/C6RA25465A
K. Jiang, S. Sun, L. Zhang, et al., Angew. Chem. Int. Ed. 54 (2015) 5360-5363.
doi: 10.1002/anie.201501193
F. Arcudi, L. Dordevic, M. Prato, Angew. Chem. Int. Ed. 55 (2016) 2107-2112.
doi: 10.1002/anie.201510158
C.L. Shen, Q. Lou, K.K. Liu, L. Dong, C.X. Shan, Nano Today 35 (2020) 100954.
M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, J. Mater. Chem. C 2 (2014) 6954-6960.
doi: 10.1039/C4TC01191K
H. Ding, J.S. Wei, P. Zhang, et al., Small 14 (2018) 1800612.
J.B. Essner, J.A. Kist, L. Polo-Parada, G.A. Baker, Chem. Mater. 30 (2018) 1878-1887.
doi: 10.1021/acs.chemmater.7b04446
J. Schneider, C.J. Reckmeier, Y. Xiong, et al., J. Phys. Chem. C 121 (2017) 2014-2022.
Y. Song, S. Zhu, S. Zhang, et al., J. Mater. Chem. C 3 (2015) 5976-5984.
doi: 10.1039/C5TC00813A
J. Zhang, L. Yang, Y. Yuan, J. Jiang, S.H. Yu, Chem. Mater. 28 (2016) 4367-4374.
doi: 10.1021/acs.chemmater.6b01360
L. Bao, C. Liu, Z.L. Zhang, D.W. Pang, Adv. Mater. 27 (2015) 1663-1667.
doi: 10.1002/adma.201405070
H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, ACS Nano 10 (2016) 484-491.
doi: 10.1021/acsnano.5b05406
X. Li, S. Zhang, S.A. Kulinich, Y. Liu, H. Zeng, Sci. Rep. 4 (2014) 4976.
S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, ACS Nano 7 (2013) 1239-1245.
doi: 10.1021/nn304675g
R. Genc, M.O. Alas, E. Harputlu, et al., Sci. Rep. 7 (2017) 11222.
T. Zhang, J. Zhu, Y. Zhai, et al., Nanoscale 9 (2017) 13042-13051.
doi: 10.1039/C7NR03570E
M. Zheng, Y. Li, Y. Zhang, Z. Xie, RSC Adv. 6 (2016) 83501-83504.
doi: 10.1039/C6RA16055G
S. Zhu, L. Wang, N. Zhou, et al., Chem. Commun. 50 (2014) 13845-13848.
doi: 10.1039/C4CC05806B
L. Ai, Y. Yang, B. Wang, et al., Sci. Bull. 66 (2021) 839-856.
doi: 10.1016/j.scib.2020.12.015
S.L. Shen, X.Q. Huang, Y.Y. Zhang, et al., Sens. Actuators B: Chem. 263 (2018) 252-257.
doi: 10.1016/j.snb.2018.02.121
Y. Zhang, S. Li, Z. Zhao, Anal. Chem. 88 (2016) 12380-12385.
doi: 10.1021/acs.analchem.6b03632
R. Gotor, P. Ashokkumar, M. Hecht, K. Keil, K. Rurack, Anal. Chem. 89 (2017) 8437-8444.
doi: 10.1021/acs.analchem.7b01903
Z. Wei, H. Li, S. Liu, et al., Anal. Chem. 91 (2019) 15477-15483.
doi: 10.1021/acs.analchem.9b03272
J. Liu, Y. Chen, L. Wang, et al., J. Agric. Food Chem. 67 (2019) 3826-3836.
doi: 10.1021/acs.jafc.9b00024
W. Lu, Y. Jiao, Y. Gao, et al., ACS Appl. Mater. Interfaces 10 (2018) 42915-42924.
doi: 10.1021/acsami.8b16710
Y. Hu, L. Zhang, X. Li, et al., ACS Sustain. Chem. Eng. 5 (2017) 4992-5000.
doi: 10.1021/acssuschemeng.7b00393
W. Lu, Y. Gao, Y. Jiao, et al., Nanoscale 9 (2017) 11545-11552.
doi: 10.1039/C7NR02336G
P. Gao, Z. Xie, M. Zheng, Sens. Actuators B: Chem. 319 (2020) 128265.
Y. Ma, A.Y. Chen, Y.Y. Huang, et al., Carbon 162 (2020) 234-244.
doi: 10.1016/j.carbon.2020.02.048
Q. Hu, Y. Pan, X. Gong, et al., Food Chem. 308 (2020) 125590.
Z. Liu, M. Chen, Y. Guo, et al., Chem. Eng. J. 384 (2020) 123260.
Y. Song, C. Zhu, J. Song, et al., ACS Appl. Mater. Interfaces 9 (2017) 7399-7405.
doi: 10.1021/acsami.6b13954
Z. Liu, W. Jin, F. Wang, et al., Sens. Actuators B: Chem. 296 (2019) 126698.
J. Yue, L. Li, L. Cao, et al., ACS Appl. Mater. Interfaces 11 (2019) 44566-44572.
doi: 10.1021/acsami.9b13737
Z. Chen, S. Wang, X. Yang, J. Photoch. Photobiol. A: Chem. 365 (2018) 178-184.
doi: 10.1016/j.jphotochem.2018.08.001
S. Sun, K. Jiang, S. Qian, Y. Wang, H. Lin, Anal. Chem. 89 (2017) 5542-5548.
doi: 10.1021/acs.analchem.7b00602
J. Wang, Y. Yang, G. Sun, M. Zheng, Z. Xie, Environ. Res. 177 (2019) 108621.
J. Kudr, L. Richtera, K. Xhaxhiu, et al., Biosens. Bioelectron. 92 (2017) 133-139.
doi: 10.1016/j.bios.2017.01.067
Y. Wang, K. Jiang, J. Zhu, L. Zhang, H. Lin, Chem. Commun. 51 (2015) 12748-12751.
doi: 10.1039/C5CC04905A
M. Zheng, Z. Xie, D. Qu, et al., ACS Appl. Mater. Interfaces 5 (2013) 13242-13247.
doi: 10.1021/am4042355
S. Huang, E. Yang, J. Yao, et al., ACS Omega 4 (2019) 9333-9342.
doi: 10.1021/acsomega.9b00874
X. Wu, S. Sun, Y. Wang, et al., Biosens. Bioelectron. 90 (2017) 501-507.
doi: 10.1016/j.bios.2016.10.060
H. Li, D. Su, H. Gao, et al., Anal. Chem. 92 (2020) 3198-3205.
doi: 10.1021/acs.analchem.9b04917
J. He, H. Zhang, J. Zou, et al., Biosens. Bioelectron. 79 (2016) 531-535.
doi: 10.1016/j.bios.2015.12.084
M. Luo, Y. Hua, Y. Liang, et al., Biosens. Bioelectron. 98 (2017) 195-201.
doi: 10.1016/j.bios.2017.06.056
S. Pawar, U.K. Togiti, A. Bhattacharya, A. Nag, ACS Omega 4 (2019) 11301-11311.
doi: 10.1021/acsomega.9b01208
M. Lan, Y. Di, X. Zhu, et al., Chem. Commun. 51 (2015) 15574-15577.
doi: 10.1039/C5CC05835J
Y. Xu, X. Chen, R. Chai, et al., Nanoscale 8 (2016) 13414-13421.
doi: 10.1039/C6NR03129C
Z. Gao, L. Wang, R. Su, et al., Biosens. Bioelectron. 70 (2015) 232-238.
doi: 10.1016/j.bios.2015.03.043
Y. Hu, Z. Gao, J. Yang, H. Chen, L. Han, J. Colloid Interface Sci. 538 (2019) 481-488.
doi: 10.1016/j.jcis.2018.12.016
P. Gao, J. Wang, M. Zheng, Z. Xie, Chem. Eng. J. 381 (2020) 122665.
G. Gao, Y.W. Jiang, J. Yang, F.G. Wu, Nanoscale 9 (2017) 18368-18378.
doi: 10.1039/C7NR06764J
X.W. Hua, Y.W. Bao, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 10948-10960.
doi: 10.1039/C7NR03658B
X.W. Hua, Y.W. Bao, F.G. Wu, ACS Appl. Mater. Interfaces 10 (2018) 10664-10677.
doi: 10.1021/acsami.7b19549
X.W. Hua, Y.W. Bao, J. Zeng, F.G. Wu, ACS Appl. Mater. Interfaces 11 (2019) 32647-32658.
doi: 10.1021/acsami.9b09590
X. Chen, X. Zhang, F.G. Wu, Chin. Chem. Lett. 32 (2021) 3048-3052.
doi: 10.1016/j.cclet.2021.03.061
G. Gao, Y.W. Jiang, W. Sun, F.G. Wu, Chin. Chem. Lett. 29 (2018) 1475-1485.
doi: 10.1016/j.cclet.2018.07.004
J. Yang, G. Gao, X. Zhang, et al., Carbon 146 (2019) 827-839.
doi: 10.1016/j.carbon.2019.02.040
J. Yang, X. Zhang, Y.H. Ma, et al., ACS Appl. Mater. Interfaces 8 (2016) 32170-32181.
doi: 10.1021/acsami.6b10398
Y. Song, H. Li, F. Lu, et al., J. Mater. Chem. B 5 (2017) 6008-6015.
doi: 10.1039/C7TB01092C
M. Wang, Y. Xia, J. Qiu, X. Ren, Spectrochim Acta A: Mol. Biomol. Spectrosc. 206 (2019) 170-176.
doi: 10.1016/j.saa.2018.08.006
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Ya-Ping Liu , Zhi-Rong Gui , Zhen-Wen Zhang , Sai-Kang Wang , Wei Lang , Yanzhu Liu , Qian-Yong Cao . A phenylphenthiazide anchored Tb(Ⅲ)-cyclen complex for fluorescent turn-on sensing of ClO−. Chinese Chemical Letters, 2025, 36(2): 109769-. doi: 10.1016/j.cclet.2024.109769
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Qiang Fu , Shouhong Sun , Kangzhi Lu , Ning Li , Zhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Yuan Liu , Boyang Wang , Yaxin Li , Weidong Li , Siyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Wu-Jian Long , Yang Yu , Chuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943
Qiang Li , Jiangbo Fan , Hongkai Mu , Lin Chen , Yongzhen Yang , Shiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
Rui Cheng , Xin Huang , Tingting Zhang , Jiazhuang Guo , Jian Yu , Su Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942