Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production
-
* Corresponding authors.
E-mail addresses: wguo@hust.edu.cn (W. Guo), byxia@hust.edu.cn (B.Y. Xia).
Citation: Hong Chen, Yansong Zhou, Wei Guo, Bao Yu Xia. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production[J]. Chinese Chemical Letters, ;2022, 33(4): 1831-1840. doi: 10.1016/j.cclet.2021.09.034
Q. Xu, J. Zhang, D. Wang, Y. Li, Chin. Chem. Lett. 32 (2021) 3771–3781.
doi: 10.1016/j.cclet.2021.05.032
Y. Wang, Y. Zhao, X. Ding, L. Qiao, J. Energy Chem. 60 (2021) 451–479
doi: 10.3390/healthcare9040451
J. Chi, H. Yu, Chin. J. Catal. 39 (2018) 390–394
doi: 10.1016/S1872-2067(17)62949-8
L. Zhang, L. Zhuang, H. Liu, et al., Small Sci. 1 (2021) 2000027
doi: 10.1002/smsc.202000027
S. Li, J. Sun, J. Guan, Chin. J. Catal. 42 (2021) 511–556
doi: 10.1016/S1872-2067(20)63693-2
M. Grätzel, Nature 414 (2001) 338–344
doi: 10.1038/35104607
L. Zhang, H. Zhao, S. Xu, et al., Small Struct. 2 (2021) 2000048
doi: 10.1002/sstr.202000048
C.T. Hsieh, X.F. Chuah, C.L. Huang, et al., Small Method. 3 (2019) 1900234
doi: 10.1002/smtd.201900234
C. Chen, L. Wang, B. Zhu, et al., J. Energy Chem. 54 (2021) 528–554
doi: 10.1016/j.jechem.2020.05.068
Y. Zhang, K. Ren, L. Wang, L. Wang, Z. Fan, Chin. Chem. Lett. 33 (2022) 33–60.
doi: 10.6023/cjoc202107066
H.C. Zeng, ChemCatChem 12 (2020) 5303–5311
doi: 10.1002/cctc.202001003
V. Polshettiwar, R. Luque, A. Fihri, et al., Chem. Rev. 111 (2011) 3036–3075
doi: 10.1021/cr100230z
Y. Gong, X. Xing, Y. Wang, et al., Small Sci. (2021) 2100006
doi: 10.1002/smsc.202100006
H.B. Aiyappa, J. Masa, C. Andronescu, et al., Small Method. 3 (2019) 1800415
doi: 10.1002/smtd.201800415
X. Liu, T. Yue, K. Qi, et al., Chin. Chem. Lett. 31 (2020) 2189–2201
doi: 10.1002/mma.6033
W. Liu, H. Zhang, C. Li, et al., J. Energy Chem. 47 (2020) 333–345
doi: 10.2147/nss.s248643
P. Prabhu, J.M. Lee, Chem. Soc. Rev. 50 (2021) 6700–6719
doi: 10.1039/d0cs01041c
Y. Zheng, Y. Jiao, L.H. Li, et al., ACS Nano 8 (2014) 5290–5296
doi: 10.1021/nn501434a
D. Liu, J. Wang, J. Lu, et al., Small Method. 3 (2019) 1900083
doi: 10.1002/smtd.201900083
D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 28 (2016) 6197–6206
doi: 10.1002/adma.201505597
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57
doi: 10.1038/s41467-019-13631-2
S. Intikhab, V. Natu, J. Li, et al., J. Catal. 371 (2019) 325–332
doi: 10.1016/j.jcat.2019.01.037
W. Fang, L. Huang, S. Zaman, et al., Chem. Res. Chin. Univ. 36 (2020) 611–621
doi: 10.1007/s40242-020-0182-3
A.J. Bard, Nature 368 (1994) 597–598
doi: 10.1038/368597a0
C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555–6569
doi: 10.1039/C3CS60468C
R. Subbaraman, D. Tripkovic, D. Strmcnik, et al., Science 334 (2011) 1256
doi: 10.1126/science.1211934
Q. Gao, W. Zhang, Z. Shi, L. Yang, Y. Tang, Adv. Mater. 31 (2019) 1802880
doi: 10.1002/adma.201802880
Z.W. Seh, J. Kibsgaard, C.F. Dickens, et al., Science 355 (2017) eaad4998
doi: 10.1126/science.aad4998
B. Xiong, L. Chen, J. Shi, ACS Catal. 8 (2018) 3688–3707
doi: 10.1021/acscatal.7b04286
J. Zhu, L. Hu, P. Zhao, L.Y.S. Lee, K.Y. Wong, Chem. Rev. 120 (2020) 851–918
doi: 10.1021/acs.chemrev.9b00248
H. Vrubel, T. Moehl, M. Grätzel, X. Hu, Chem. Commun. 49 (2013) 8985–8987
doi: 10.1039/c3cc45416a
M. Zeng, Y. Li, J. Mater. Chem. A 3 (2015) 14942–14962
doi: 10.1039/C5TA02974K
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 29 (2017) 1605838
doi: 10.1002/adma.201605838
A. Ali, P.K. Shen, Carbon Energy 2 (2020) 99–121
doi: 10.1002/cey2.26
S.L. Cai, W.G. Zhang, R.N. Zuckermann, et al., Adv. Mater. 27 (2015) 5762–5770
doi: 10.1002/adma.201500124
F. Yang, S. Cheng, X. Zhang, et al., Adv. Mater. 30 (2018) 1702415
doi: 10.1002/adma.201702415
M.X. Wu, Y.W. Yang, Chin. Chem. Lett. 28 (2017) 1135–1143
doi: 10.1016/j.cclet.2017.03.026
T. Sick, A.G. Hufnagel, J. Kampmann, et al., J. Am. Chem. Soc. 140 (2018) 2085–2092
doi: 10.1021/jacs.7b06081
S.Y. Ding, J. Gao, Q. Wang, et al., J. Am. Chem. Soc. 133 (2011) 19816–19822
doi: 10.1021/ja206846p
H. Sahabudeen, H. Qi, B.A. Glatz, et al., Nat. Commun. 7 (2016) 13461
doi: 10.1038/ncomms13461
H. Huang, F. Li, Y. Zhang, Y. Chen, J. Mater. Chem. A 7 (2019) 5575–5582
doi: 10.1039/c9ta00040b
B. Ball, C. Chakravarty, P. Sarkar, J. Phys. Chem. Lett. 11 (2020) 1542–1549
doi: 10.1021/acs.jpclett.9b03876
S. Maiti, A.R. Chowdhury, A.K. Das, ChemNanoMat 6 (2020) 99–106
doi: 10.1002/cnma.201900499
C. Yang, S. Tao, N. Huang, et al., ACS Appl. Nano Mater. 3 (2020) 5481–5488
doi: 10.1021/acsanm.0c00786
D. Wu, Q. Xu, J. Qian, X. Li, Y. Sun, Chem. Eur. J. 25 (2019) 3105–3111
A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Adv. Mater. 31 (2019) 1900617
doi: 10.1002/adma.201900617
X. Zhang, J. Han, J. Guo and Z. Tang, Small Struct. 2 (2021) 2000141
doi: 10.1002/sstr.202000141
X. He, F. Yin, H. Wang, B. Chen, G. Li, Chin. J. Catal. 39 (2018) 207–227
doi: 10.1016/S1872-2067(18)63017-7
X. Li, Z. Wang and L. Wang, Small Sci. 1 (2021) 2000074
doi: 10.1002/smsc.202000074
T. Xia, Y. Lin, W. Li, M. Ju, Chin. Chem. Lett. 32 (2021) 2975–2984.
doi: 10.1016/j.cclet.2021.02.058
Y.P. Wu, W. Zhou, J. Zhao, et al., Angew. Chem. Int. Ed. 56 (2017) 13001–13005
doi: 10.1002/anie.201707238
L. Qi, Y.Q. Su, Z. Xu, et al., J. Mater. Chem. A 8 (2020) 22974–22982
doi: 10.1039/d0ta08094b
M. Zhao, W. Li, J. Li, W. Hu, C.M. Li, Adv. Sci. 7 (2020) 2001965
doi: 10.1002/advs.202001965
D. Zhu, J. Liu, Y. Zhao, Y. Zheng, S.Z. Qiao, Small 15 (2019) 1805511
doi: 10.1002/smll.201805511
M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater. 23 (2013) 5363–5372
doi: 10.1002/adfm.201300510
H. Huang, Y. Zhao, Y. Bai, et al., Adv. Sci. 7 (2020) 2000012
doi: 10.1002/advs.202000012
Y. Sun, Z. Xue, Q. Liu, et al., Nat. Commun. 12 (2021) 1369
doi: 10.1038/s41467-021-21595-5
R. Dong, Z. Zheng, D.C. Tranca, et al., Chem. Eur. J. 23 (2017) 2255–2260
doi: 10.1002/chem.201605337
Z. Chen, H. Qing, K. Zhou, D. Sun, R. Wu, Prog. Mater. Sci. 108 (2020) 100618
doi: 10.1016/j.pmatsci.2019.100618
M. Kuang, Q. Wang, P. Han, G. Zheng, Adv. Energy Mater. 7 (2017) 1700193
doi: 10.1002/aenm.201700193
G. Anandhababu, Y. Huang, D.D. Babu, M. Wu, Y. Wang, Adv. Funct. Mater. 28 (2018) 1706120
doi: 10.1002/adfm.201706120
S.M. Oh, S.B. Patil, X. Jin, S.J. Hwang, Chem. Eur. J. 24 (2018) 4757–4773
doi: 10.1002/chem.201704284
P. Karthick Kannan, P. Shankar, C. Blackman, C.H. Chung, Adv. Mater. 31 (2019) 1803432
doi: 10.1002/adma.201803432
Y. Chen, Z. Fan, Z. Zhang, et al., Chem. Rev. 118 (2018) 6409–6455
doi: 10.1021/acs.chemrev.7b00727
H. Liu, H. Tang, M. Fang, et al., Adv. Mater. 28 (2016) 8170–8176
doi: 10.1002/adma.201601180
R. Shen, J. Xie, Q. Xiang, et al., Chin. J. Catal. 40 (2019) 240–288
doi: 10.1016/S1872-2067(19)63294-8
X. Zeng, Y. Zhao, X. Hu, G.D. Stucky, M. Moskovits, Small Struct. 2 (2021) 2000138
doi: 10.1002/sstr.202000138
R. Gusmão, Z. Sofer, D. Bouša, M. Pumera, Angew. Chem. Int. Ed. 56 (2017) 14417–14422
doi: 10.1002/anie.201706389
C. Gibaja, M. Assebban, I. Torres, et al., J. Mater. Chem. A 7 (2019) 22475–22486
doi: 10.1039/c9ta06072c
C. Li, Y. Xu, S. Liu, et al., ACS Sustain. Chem. Eng. 7 (2019) 15747–15754
doi: 10.1021/acssuschemeng.9b03967
J. Fan, J. Wu, X. Cui, et al., J. Am. Chem. Soc. 142 (2020) 3645–3651
doi: 10.1021/jacs.0c00218
A. Mahmood, H. Lin, N. Xie, X. Wang, Chem. Mat. 29 (2017) 6329–6335
doi: 10.1021/acs.chemmater.7b01598
S.W. Jang, S. Dutta, A. Kumar, et al., ACS Nano 14 (2020) 10578–10588
doi: 10.1021/acsnano.0c04628
T.P. Yadav, C.F. Woellner, T. Sharifi, et al., ACS Nano 14 (2020) 7435–7443
doi: 10.1021/acsnano.0c03081
J.Q. Chi, M. Yang, Y.M. Chai, et al., J. Energy Chem. 48 (2020) 398–423
doi: 10.1016/j.jechem.2020.02.013
J. Wang, H. Zhang and X. Wang, Small Method. 1 (2017) 1700118
doi: 10.1002/smtd.201700118
K. Hu, T. Ohto, Y. Nagata, et al., Nat. Commun. 12 (2021) 203
doi: 10.1038/s41467-020-20503-7
X. Zheng, J. Xu, K. Yan, et al., Chem. Mat. 26 (2014) 2344–2353
doi: 10.1021/cm500347r
L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, J. Energy Chem. 49 (2020) 365–374
doi: 10.1016/j.jechem.2020.03.010
Y. Fujita, H.O. Venterink, P.M. Van Bodegom, et al., Nature 505 (2014) 82–86
doi: 10.1038/nature12733
J. Si, J. Yu, Y. Shen, M. Zeng, L. Fu, Small Struct. 2 (2021) 2000101
doi: 10.1002/sstr.202000101
X. Wang, L. Bai, J. Lu, et al., Angew. Chem. Int. Ed. 58 (2019) 19060–19066
doi: 10.1002/anie.201911696
Y. Li, W. Pei, J. He, et al., ACS Catal. 9 (2019) 10870–10875
doi: 10.1021/acscatal.9b03506
X. Li, L. Xiao, L. Zhou, et al., Angew. Chem. Int. Ed. 59 (2020) 21106–21113
doi: 10.1002/anie.202008514
R. He, J. Hua, A. Zhang, et al., Nano Lett. 17 (2017) 4311–4316
doi: 10.1021/acs.nanolett.7b01334
Y. Cai, J. Gao, S. Chen, et al., Chem. Mat. 31 (2019) 8948–8956
doi: 10.1021/acs.chemmater.9b03031
B. Zhao, Z. Wan, Y. Liu, et al., Nature 591 (2021) 385–390
doi: 10.1038/s41586-021-03338-0
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225–6331
doi: 10.1021/acs.chemrev.6b00558
H. Tributsch, J.C. Bennett, J. Electronanal. Chem. 81 (1977) 97–111
doi: 10.1016/S0022-0728(77)80363-X
B. Hinnemann, P.G. Moses, J. Bonde, et al., J. Am. Chem. Soc. 127 (2005) 5308–5309
doi: 10.1021/ja0504690
J. Wei, G. Wang, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 1191–1196
doi: 10.1016/j.cclet.2020.08.005
S. Hua, D. Qu, L. An, et al., Chin. J. Catal. 38 (2017)1028–1037
doi: 10.1016/S1872-2067(17)62830-4
K. Jiang, M. Luo, Z. Liu, et al., Nat. Commun. 12 (2021) 1687
doi: 10.1038/s41467-021-21956-0
H.I. Karunadasa, E. Montalvo, Y. Sun, et al., Science 335 (2012) 698
doi: 10.1126/science.1215868
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, et al., Science 317 (2007) 100
doi: 10.1126/science.1141483
J. Hu, C. Zhang, Y. Zhang, et al., Small 16 (2020) 2002212
doi: 10.1002/smll.202002212
D. Voiry, M. Salehi, R. Silva, et al., Nano Lett. 13 (2013) 6222–6227
doi: 10.1021/nl403661s
E.E. Benson, H. Zhang, S.A. Schuman, et al., J. Am. Chem. Soc. 140 (2018) 441–450
doi: 10.1021/jacs.7b11242
H. Wang, X. Xiao, S. Liu, et al., J. Am. Chem. Soc. 141 (2019) 18578–18584
doi: 10.1021/jacs.9b09932
J. Zhang, T. Wang, P. Liu, et al., Energy Environ. Sci. 9 (2016) 2789–2793
doi: 10.1039/C6EE01786J
O. Lehtinen, H.P. Komsa, A. Pulkin, et al., ACS Nano 9 (2015) 3274–3283
doi: 10.1021/acsnano.5b00410
S. Deng, F. Yang, Q. Zhang, et al., Adv. Mater. 30 (2018) 1802223
doi: 10.1002/adma.201802223
Z. Luo, J. Ge, C. Liu, W. Xing, J. Energy Chem. 41 (2020) 15–19
doi: 10.1016/j.jechem.2019.03.031
Z. Luo, H. Zhang, Y. Yang, et al., Nat. Commun. 11 (2020) 1116
doi: 10.1038/s41467-020-14980-z
H. Huang, J. Zha, S. Li, C. Tan, Chin. Chem. Lett. 33 (2022) 163–176.
doi: 10.1016/j.cclet.2021.06.004
Y. Zhang, D. Yao, B. Xia, et al., Small Sci. 1 (2021) 2000052
doi: 10.1002/smsc.202000052
X. Gao, B. Li, X. Sun, et al., Chin. Chem. Lett. 32 (2021) 3591–3595.
doi: 10.1016/j.cclet.2021.03.053
J. Azadmanjiri, P. Kumar, V.K. Srivastava, Z. Sofer, ACS Appl. Nano Mater. 3 (2020) 3116–3143
doi: 10.1021/acsanm.0c00120
Q. Tang, D.E. Jiang, ACS Catal. 6 (2016) 4953–4961
doi: 10.1021/acscatal.6b01211
X. Chen, Y. Qiu, G. Liu, et al., J. Mater. Chem. A 5 (2017) 11357–11363
doi: 10.1039/C7TA02327H
D. Gao, B. Xia, Y. Wang, et al., Small 14 (2018) 1704150
doi: 10.1002/smll.201704150
W. Cui, Z.Y. Hu, R.R. Unocic, G. Van Tendeloo, X. Sang, Chin. Chem. Lett. 32 (2021) 339–344
doi: 10.1016/j.cclet.2020.04.024
L. Huang, L. Ding, H. Wang, Small Sci. (2021) 2100013
doi: 10.1002/smsc.202100013
K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, Chin. J. Catal. 42 (2021) 3–14
doi: 10.1016/S1872-2067(20)63630-0
H. Pan, Sci. Rep. 6 (2016) 32531
doi: 10.1038/srep32531
Y. Gao, H. Zhuo, Y. Cao, et al., Chin. J. Catal. 40 (2019) 152–159
doi: 10.1016/S1872-2067(18)63197-3
H. Lind, B. Wickman, J. Halim, et al., Adv. Sustain. Syst. 5 (2021) 2000158
doi: 10.1002/adsu.202000158
J. Zhang, Y. Zhao, X. Guo, et al., Nat. Catal. 1 (2018) 985–992
doi: 10.1038/s41929-018-0195-1
Y. Jiang, T. Sun, X. Xie, et al., ChemSusChem 12 (2019) 1368–1373
doi: 10.1002/cssc.201803032
A.D. Handoko, K.D. Fredrickson, B. Anasori, et al., ACS Appl. Energy Mater. 1 (2018) 173–180
doi: 10.1021/acsaem.7b00054
W. Xiao, D. Yan, Y. Zhang, X. Yang, T. Zhang, Energy Fuels 35 (2021) 4609–4615
doi: 10.1021/acs.energyfuels.1c00123
D. Geng, X. Zhao, Z. Chen, et al., Adv. Mater. 29 (2017) 1700072
doi: 10.1002/adma.201700072
Y. Liu, H. Xiao, W.A. Goddard, J. Am. Chem. Soc. 138 (2016) 15853–15856
doi: 10.1021/jacs.6b10834
C. Cui, R. Cheng, C. Zhang, X. Wang, Chin. Chem. Lett. 31 (2020) 988–991
doi: 10.1016/j.cclet.2019.08.026
A. Han, Z. Zhang, X. Li, et al., Small Method. 4 (2020) 2000248
doi: 10.1002/smtd.202000248
P.M. Bodhankar, P.B. Sarawade, G. Singh, A. Vinu, D.S. Dhawale, J. Mater. Chem. A 9 (2021) 3180–3208
doi: 10.1039/d0ta10712c
J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 46 (2017) 5950–5974
doi: 10.1039/C7CS00318H
Z. Cao, B. Li, L. Sun, et al., Small Method. 4 (2020) 1900343
doi: 10.1002/smtd.201900343
Y. Zhai, X. Ren, J. Yan, et al., Small Struct. 2 (2021) 2000096
doi: 10.1002/sstr.202000096
H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B Environ. 261 (2020) 118240
doi: 10.1016/j.apcatb.2019.118240
H. Yin, S. Zhao, K. Zhao, et al., Nat. Commun. 6 (2015) 6430
doi: 10.1038/ncomms7430
C. Xia, Y. Zhou, C. He, et al., Small Sci. 1 (2021) 2100010.
doi: 10.1002/smsc.202100010
L. Huang, S. Zaman, Z. Wang, et al., Acta Phys. Chim. Sin. 37 (2021) 2009035
Y. Yang, M. Wu, X. Zhu, et al., Chin. Chem. Lett. 30 (2019) 2065–2088
doi: 10.1016/j.cclet.2019.11.001
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Dongying Fu , Lin Pan , Yanli Ma , Yue Zhang . Bilayered Dion–Jacobson lead-iodine hybrid perovskite with aromatic spacer for broadband photodetection. Chinese Chemical Letters, 2025, 36(2): 109621-. doi: 10.1016/j.cclet.2024.109621
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016