Recent development and progress of structural energy devices
-
* Corresponding authors.
E-mail addresses: yanxiaoyu@buaa.edu.cn (X. Yan), liuxinhua19@buaa.edu.cn (X. Liu), yangshichun@buaa.edu.cn (S. Yang).
Citation: Yong Liu, Zhongxun Yu, Jia Chen, Chenxi Li, Zhengjie Zhang, Xiaoyu Yan, Xinhua Liu, Shichun Yang. Recent development and progress of structural energy devices[J]. Chinese Chemical Letters, ;2022, 33(4): 1817-1830. doi: 10.1016/j.cclet.2021.09.023
S. Chu, A. Majumdar, Nature 488 (2012) 294–303
doi: 10.1038/nature11475
C.Y. Lee, A.C. Taylor, S. Beirne, G.G. Wallace, Adv. Mater. Technol. 4 (2019) 1900433
doi: 10.1002/admt.201900433
M.K. Debe, Nature 486 (2012) 43–51
doi: 10.1038/nature11115
D. Banham, S. Ye, K. Pei, et al., J. Power Sources 285 (2015) 334–348
doi: 10.1016/j.jpowsour.2015.03.047
X. Yu, Y. Liu, H. Pham, et al., Adv. Mater. Technol. 4 (2019) 1900645
doi: 10.1002/admt.201900645
S. Gao, X. Zhan, Y.T. Cheng, J. Power Sources 410 (2019) 45–52
T.F. Yi, Y.R. Zhu, W. Tao, et al., J. Power Sources 399 (2018) 26–41
doi: 10.1016/j.jpowsour.2018.07.086
T. Ni, S. Wang, J. Shi, et al., Adv. Mater. Technol. 5 (2020) 2000268
doi: 10.1002/admt.202000268
A. Eftekhari, L. Li, Y. Yang, J. Power Sources 347 (2017) 86–107
doi: 10.1016/j.jpowsour.2017.02.054
H. Liang, J. Lin, H. Jia, et al., J. Power Sources 378 (2018) 248–254
doi: 10.1016/j.jpowsour.2017.12.046
M. Rawat, E. Jayaraman, S. Balasubramanian, S.S.K. Iyer, Adv. Mater. Technol. 4 (2019) 1900184
doi: 10.1002/admt.201900184
S. Razza, F. Di Giacomo, F. Matteocci, et al., J. Power Sources 277 (2015) 286–291
doi: 10.1016/j.jpowsour.2014.12.008
X. Fan, Y. Rui, X. Han, et al., J. Power Sources 448 (2020) 227405
doi: 10.1016/j.jpowsour.2019.227405
S. Ahmad, X. Guo, Chin. Chem. Lett. 29 (2018) 657–663
doi: 10.1016/j.cclet.2017.08.057
B.K. Deka, A. Hazarika, J. Kim, Y. -. B. Park, H.W. Park, Int. J. Energy Res. 41 (2017) 1397–1411
doi: 10.1002/er.3707
P. Ladpli, R. Nardari, F. Kopsaftopoulos, F. -. K. Chang, J. Power Sources 414 (2019) 517–529
doi: 10.1016/j.jpowsour.2018.12.051
K. Moyer, N.A. Boucherbil, M. Zohair, J. Eaves-Rathert, C.L. Pint, Sustain. Energy Fuels 4 (2020) 2661–2668
doi: 10.1039/d0se00263a
L. Christodoulou, J.D. Venables, Jom-J. Miner. Metals Mater. Soc. 55 (2003) 39–45
doi: 10.1007/s11837-003-0008-z
L.E. Asp, E.S. Greenhalgh, Compos. Sci. Technol. 101 (2014) 41–61
doi: 10.1016/j.compscitech.2014.06.020
S. Leijonmarck, T. Carlson, G. Lindbergh, et al., Compos. Sci. Technol. 89 (2013) 149–157
doi: 10.1016/j.compscitech.2013.09.026
E.S. Greenhalgh, J. Ankersen, L.E. Asp, et al., J. Compos Mater. 49 (2014) 1823–1834
doi: 10.1177/0021998314554125
A. Javaid, K.K.C. Ho, A. Bismarck, et al., J. Compos Mater. 50 (2015) 2155–2163
doi: 10.1177/0021998315602324
S. Yin, Z. Hong, Z. Hu, et al., J. Power Sources 476 (2020) 228532
doi: 10.1016/j.jpowsour.2020.228532
V. Mehta, J.S. Cooper, J. Power Sources 114 (2003) 32–53
doi: 10.1016/S0378-7753(02)00542-6
O.Z. Sharaf, M.F. Orhan, Renew. Sustain. Energy Rev. 32 (2014) 810–853
doi: 10.1016/j.rser.2014.01.012
E. Antolini, E.R. Gonzalez, J. Power Sources 195 (2010) 3431–3450
doi: 10.1016/j.jpowsour.2009.11.145
R. Ebrahim, M. Yeleuov, A. Ignatiev, Adv. Mater. Technol. 2 (2017) 1700098
doi: 10.1002/admt.201700098
D. Frattini, G. Accardo, A. Moreno, et al., J. Power Sources 352 (2017) 90–98
doi: 10.1016/j.jpowsour.2017.03.112
B. Shri Prakash, R. Pavitra, S. Senthil Kumar, S.T. Aruna, J. Power Sources 381 (2018) 136–155
doi: 10.1016/j.jpowsour.2018.02.003
K. Strickland, R. Pavlicek, E. Miner, et al., ACS Catal. 8 (2018) 3833–3843
doi: 10.1021/acscatal.8b00390
R. Wu, Y. Song, X. Huang, et al., J. Power Sources 401 (2018) 287–295
doi: 10.1177/0284185117717763
X.X. Wang, M.T. Swihart, G. Wu, Nat. Catal. 2 (2019) 578–589
doi: 10.1038/s41929-019-0304-9
Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178–203
doi: 10.1016/j.mattod.2019.06.005
K. Charradi, Z. Ahmed, P. Aranda, R. Chtourou, Appl. Clay Sci. 174 (2019) 77–85
doi: 10.1016/j.clay.2019.03.027
S. Jahangiri, İ. Aravi, L. Işıkel Şanlı, Y.Z. Menceloğlu, E. Özden-Yenigün, Polym. Adv. Technol. 29 (2018) 594–602
doi: 10.1002/pat.4169
S. -. W. Kim, S.Y. Choi, H. -. W. Rhee, J. Membr. Sci. 566 (2018) 69–76
doi: 10.1016/j.memsci.2018.08.040
C. Klose, M. Breitwieser, S. Vierrath, et al., J. Power Sources 361 (2017) 237–242
doi: 10.1016/j.jpowsour.2017.06.080
F. Ng, D.J. Jones, J. Rozière, et al., J. Membr. Sci. 362 (2010) 184–191
doi: 10.1016/j.memsci.2010.06.033
P. Salarizadeh, M. Javanbakht, S. Pourmahdian, RSC Adv. 7 (2017) 8303–8313
doi: 10.1039/C6RA25959F
F. Xu, S. Mu, M. Pan, J. Membr. Sci. 377 (2011) 134–140
doi: 10.1016/j.memsci.2011.04.027
P.A. Henry, L. Guétaz, N. Pélissier, P.A. Jacques, S. Escribano, J. Power Sources 275 (2015) 312–321
doi: 10.1016/j.jpowsour.2014.10.167
E.B. Tetteh, H.Y. Lee, C. -. H. Shin, et al., ACS Energy Lett. 5 (2020) 1601–1609
doi: 10.1021/acsenergylett.0c00184
X. Xiong, W. Chen, W. Wang, J. Li, S. Chen, Int. J. Hydrogen Energy 42 (2017) 25234–25243
doi: 10.1016/j.ijhydene.2017.08.162
Y. Zhou, D. Zhang, J. Power Sources 278 (2015) 396–403
doi: 10.1016/j.jpowsour.2014.12.088
M. Dou, M. Hou, Z. Li, et al., J. Energy Chem. 24 (2015) 39–44
doi: 10.1016/S2095-4956(15)60282-0
W.S. Jung, B.N. Popov, Catal. Today 295 (2017) 65–74
doi: 10.1016/j.cattod.2017.06.019
Z. Yan, B. Li, D. Yang, J. Ma, Chin. J. Catal. 34 (2013) 1471–1481
doi: 10.1016/S1872-2067(12)60629-9
U. Aslam, S. Linic, ACS Appl. Mater. Interfaces 9 (2017) 43127–43132
doi: 10.1021/acsami.7b14474
S.T. Hunt, M. Milina, A.C. Alba-Rubio, et al., Science 352 (2016) 974–978
doi: 10.1126/science.aad8471
X. Tian, J. Luo, H. Nan, et al., J. Am. Chem. Soc. 138 (2016) 1575–1583
doi: 10.1021/jacs.5b11364
K.C. Wang, H.C. Huang, C.H. Wang, Int. J. Hydrogen Energy 42 (2017) 11771–11778
doi: 10.1016/j.ijhydene.2017.03.084
X. Chen, S. Sun, X. Wang, F. Li, D. Xia, J. Phys. Chem. C 116 (2012) 22737–22742
doi: 10.1021/jp307055j
L. Osmieri, R. Escudero-Cid, A.H.A. Monteverde Videla, P. Ocón, S. Specchia, Appl. Catal. B: Environ. 201 (2017) 253–265
doi: 10.1016/j.apcatb.2016.08.043
T. Kitahara, H. Nakajima, M. Inamoto, M. Morishita, J. Power Sources 234 (2013) 129–138
doi: 10.1016/j.jpowsour.2013.01.150
D. Spernjak, R. Mukundan, R.L. Borup, et al., ACS Appl. Energy Mater. 1 (2018) 6006–6017
doi: 10.1021/acsaem.8b01059
B. Zahiri, R.M. Felix, A. Hill, et al., Appl. Surf. Sci. 458 (2018) 32–42
doi: 10.1016/j.apsusc.2018.07.005
H.F. Lee, P.C. Wang, Y.W. Chen-Yang, J. Solid State Electrochem. 23 (2019) 971–984
doi: 10.1007/s10008-019-04198-5
H. Tang, S. Wang, M. Pan, R. Yuan, J. Power Sources 166 (2007) 41–46
doi: 10.1017/S0022109000002180
H. Liu, W. Yang, J. Tan, Y. An, L. Cheng, Energy Conv. Manag. 176 (2018) 99–109
doi: 10.3390/pharmaceutics10030099
D. Qiu, L. Peng, P. Yi, X. Lai, W. Lehnert, Energy Conv. Manag. 174 (2018) 814–823
doi: 10.1016/j.enconman.2018.08.070
B. Timurkutluk, M.Z. Chowdhury, Fuel Cells 18 (2018) 441–448
doi: 10.1002/fuce.201800029
J. Shen, Z. Tu, S.H. Chan, Appl. Therm. Eng. 149 (2019) 1408–1418
doi: 10.1016/j.applthermaleng.2018.12.138
J. Song, H. Guo, F. Ye, C.F. Ma, Int. J. Energy Res. 43 (2019) 2940–2962
doi: 10.1002/er.4472
L.E. Asp, Plast. Rubber Compos. 42 (2013) 144–149
doi: 10.1179/1743289811y.0000000043
S.M. Kim, Y.S. Kang, C. Ahn, et al., J. Power Sources 317 (2016) 19–24
doi: 10.1016/j.jpowsour.2016.03.083
X. Liu, Y. Li, J. Xue, et al., Nat. Commun. 10 (2019) 842
doi: 10.2991/ijcis.d.190722.001
D. -. H. Lee, W. Jo, S. Yuk, et al., ACS Appl. Mater. Interfaces 10 (2018) 4682–4688
doi: 10.1021/acsami.7b16433
Y. Zeng, H. Zhang, Z. Wang, et al., J. Mater. Chem. A 6 (2018) 6521–6533
doi: 10.1039/c7ta10901f
I.M. Kong, J.W. Choi, S.I. Kim, E.S. Lee, M.S. Kim, Appl. Energy 145 (2015) 345–353
doi: 10.1016/j.apenergy.2015.02.027
P. Trogadas, J.I.S. Cho, T.P. Neville, et al., Energy Environ. Sci. 11 (2018) 136–143
doi: 10.1039/C7EE02161E
J. Dai, H. Thomas T. Hahn, Compos. Struct. 61 (2003) 247–253
doi: 10.1016/S0263-8223(03)00040-0
E.E. Gdoutos, I.M. Daniel, Appl. Mech. Mater. 13-14 (2008) 91–98
doi: 10.4028/www.scientific.net/AMM.13-14.91
J.T. South, R.H. Carter, J.F. Snyder, C.D. Hilton, D.J. O'Brien, E.D. Wetzel, Multifunctional power-generating and energy-storing structural composites for US Army applications, in: M. Chipara, D.L. Edwards, R.S. Benson, S. Phillips (Eds. ), Materials For Space Applications, 2005, pp. 139–150
C.D. Hilton, D.M. Peairs, J.J. Lesko, S.W. Case, J. Fuel Cell Sci. Technol. 8 (2011) 051008
doi: 10.1115/1.4003760
F. Wang, Q. Han, Z. Yi, et al., J. Electroanal. Chem. 807 (2017) 196–202
doi: 10.1016/j.jelechem.2017.10.039
Q. Han, X. Li, F. Wang, et al., J. Electroanal. Chem. 833 (2019) 39–46
doi: 10.1016/j.jelechem.2018.11.014
Q. Han, W. Zhang, Z. Han, et al., Ionics (Kiel) 25 (2019) 5333–5340
doi: 10.1007/s11581-019-03124-z
Q. Han, F. Wang, Z. Wang, et al., Ionics (Kiel) 24 (2017) 1049–1055
Q. Han, W. Zhang, Z. Han, et al., J. Mater. Sci. 54 (2019) 11972–11982
doi: 10.1007/s10853-019-03751-x
H. Li, S. Wang, M. Feng, J. Yang, B. Zhang, Chin. Chem. Lett. 30 (2019) 529–532
doi: 10.1016/j.cclet.2018.06.024
J. Liu, K. Song, P.A. van Aken, J. Maier, Y. Yu, Nano Lett. 14 (2014) 2597–2603
doi: 10.1021/nl5004174
J. Hagberg, H.A. Maples, K.S.P. Alvim, et al., Compos. Sci. Technol. 162 (2018) 235–243
doi: 10.1016/j.compscitech.2018.04.041
X. Tian, J. Jin, S. Yuan, et al., Adv. Energy Mater. 7 (2017) 1700127
doi: 10.1002/aenm.201700127
K. Sun, T.S. Wei, B.Y. Ahn, et al., Adv. Mater. 25 (2013) 4539–4543
doi: 10.1002/adma.201301036
J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, Nat. Commun. 4 (2013) 1732
doi: 10.1038/ncomms2747
C. Sun, S. Liu, X. Shi, et al., Chem. Eng. J. 381 (2020) 122641
doi: 10.1016/j.cej.2019.122641
Y. Zhang, J. Ma, A.K. Singh, et al., J. Intell. Mater. Syst. Struct. 28 (2017) 1603–1613
doi: 10.1177/1045389X16679021
T. Carlson, L. Asp, V. Ekermo, P.I. Sellergren, in: ICCM19, 2013.
https://www.media.volvocars.com/global/en-gb/media/pressreleases/35026 (Accessed 5 September 2020).
R. Wang, W. Cui, F. Chu, F. Wu, J. Energy Chem. 48 (2020) 145–159
doi: 10.1016/j.jechem.2019.12.024
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Chem. Rev. 117 (2017) 10403–10473
doi: 10.1021/acs.chemrev.7b00115
D. Lin, Y. Liu, Z. Liang, et al., Nat. Nanotechnol. 11 (2016) 626
doi: 10.1038/nnano.2016.32
R. Zhang, X. Chen, X. Shen, et al., Joule 2 (2018) 764–777
doi: 10.1016/j.joule.2018.02.001
X. Liu, X. Qian, W. Tang, et al., J. Energy Chem. 52 (2021) 385–392
doi: 10.1364/ome.412144
P. Xue, C. Sun, H. Li, J. Liang, C. Lai, Adv. Sci. 6 (2019) 1900943
doi: 10.1002/advs.201900943
C. Yang, L. Zhang, B. Liu, et al., Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 3770–3775
doi: 10.1073/pnas.1719758115
F. Li, J. He, J. Liu, et al., Angew. Chem., Int. Ed. 60 (2021) 6600–6608
doi: 10.1002/anie.202013993
H. Wang, J. He, J. Liu, et al., Adv. Funct. Mater. 31 (2021) 2002578
doi: 10.1002/adfm.202002578
S. Qi, H. Wang, J. He, et al., Sci. Bull. 66 (2021) 685–693
doi: 10.1016/j.scib.2020.09.018
N. Shirshova, H. Qian, M. Houlle, et al., Faraday Discuss. 172 (2014) 81–103
doi: 10.1039/C4FD00055B
Q. Li, L. Deng, J.K. Kim, et al., J. Electrochem. Soc. 164 (2017) A3220–A3228
doi: 10.1149/2.1181713jes
Q. Li, Y.Q. Zhu, S.J. Eichhorn, J. Mater. Sci. 53 (2018) 14598–14607
doi: 10.1007/s10853-018-2665-x
A. Javaid, M.B. Zafrullah, F. uU.H. Khan, G.M. Bhatti, J. Compos Mater. 53 (2018) 1401–1409
doi: 10.1177/0021998318802622
H. Qian, A.R. Kucernak, E.S. Greenhalgh, A. Bismarck, M.S. Shaffer, ACS Appl. Mater. Interfaces 5 (2013) 6113–6122
doi: 10.1021/am400947j
A. Javaid, K.K.C. Ho, A. Bismarck, et al., J. Compos. Mater. 52 (2018) 3085–3097
doi: 10.1177/0021998318761216
Y. Wang, X. Qiao, C. Zhang, X. Zhou, J. Energy Storage 26 (2019) 100968
doi: 10.1016/j.est.2019.100968
N. Shirshova, A. Bismarck, S. Carreyette, et al., J. Mater. Chem. A 1 (2013) 15300–15309
doi: 10.1039/c3ta13163g
X. Liu, R. Jervis, R.C. Maher, et al., Adv. Mater. Technol. 1 (2016) 1600167
doi: 10.1002/admt.201600167
W. Li, Y. Li, M. Su, et al., J. Mater. Chem. A 5 (2017) 16281–16288
doi: 10.1039/C7TA02041D
Z. Niu, P. Luan, Q. Shao, et al., Energy Environ. Sci. 5 (2012) 8726–8733
doi: 10.1039/c2ee22042c
X. Cao, B. Zheng, W. Shi, et al., Adv. Mater. 27 (2015) 4695–4701
doi: 10.1002/adma.201501310
J.X. Feng, S.H. Ye, A.L. Wang, et al., Adv. Funct. Mater. 24 (2014) 7093–7101
doi: 10.1002/adfm.201401876
J.A. Lee, M.K. Shin, S.H. Kim, et al., ACS Nano 6 (2012) 327–334
doi: 10.1021/nn203640a
W. Liu, M. Zhu, J. Liu, X. Li, J. Liu, Chin. Chem. Lett. 30 (2019) 750–756
doi: 10.1016/j.cclet.2018.09.013
R. Wang, Q.R. Wang, M.J. Yao, et al., Rare Met. 37 (2018) 536–542
doi: 10.1007/s12598-018-1034-x
L. Kou, T. Huang, B. Zheng, et al., Nat. Commun. 5 (2014) 3754
doi: 10.1038/ncomms4754
Y. Meng, Y. Zhao, C. Hu, et al., Adv. Mater. 25 (2013) 2326–2331
doi: 10.1002/adma.201300132
Z. Cai, L. Li, J. Ren, et al., J. Mater. Chem. A 1 (2013) 258–261
doi: 10.1039/c2ta00274d
X. Chen, L. Qiu, J. Ren, et al., Adv. Mater. 25 (2013) 6436–6441
doi: 10.1002/adma.201301519
G. Qu, J. Cheng, X. Li, et al., Adv. Mater. 28 (2016) 3646–3652
doi: 10.1002/adma.201600689
M. Liao, H. Sun, J. Zhang, et al., Small 14 (2018) 1702052
doi: 10.1002/smll.201702052
L. Wang, Q. Wu, Z. Zhang, et al., J. Mater. Chem. A 4 (2016) 3217–3222
H. Sun, X. Fu, S. Xie, et al., Adv. Mater. 28 (2016) 6429–6435
doi: 10.1002/adma.201600506
H. Sun, S. Xie, Y. Li, et al., Adv. Mater. 28 (2016) 8431–8438
doi: 10.1002/adma.201602987
Y. Hong, X.L. Cheng, G.J. Liu, et al., Chin. J. Polym. Sci. 37 (2019) 737–743
doi: 10.1007/s10118-019-2301-5
Y. Zhao, J. Cao, Y. Zhang, H. Peng, Adv. Funct. Mater. 30 (2019) 1902971
W.W. Ning, L.B. Chen, W. Wei, Y.J. Chen, X.Y. Zhang, Rare Met. 39 (2020) 1034–1044
doi: 10.1007/s12598-020-01374-9
Y. Wang, W. Zhou, Q. Kang, et al., ACS Appl. Mater. Interfaces 10 (2018) 27001–27008
doi: 10.1021/acsami.8b06710
S. Chen, B. Shi, W. He, et al., Adv. Funct. Mater. 29 (2019) 1906618
doi: 10.1002/adfm.201906618
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189