Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria
-
* Corresponding authors.
E-mail addresses: puqs@lzu.edu.cn (Q. Pu), jmlin@mail.tsinghua.edu.cn (J.-M. Lin).
Citation: Gaowa Xing, Weifei Zhang, Nan Li, Qiaosheng Pu, Jin-Ming Lin. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria[J]. Chinese Chemical Letters, ;2022, 33(4): 1743-1751. doi: 10.1016/j.cclet.2021.08.073
A.H. Havelaar, M.D. Kirk, P.R. Torgerson, et al., PLOS Med. 12 (2015) 1001923.
doi: 10.1371/journal.pmed.1001923
S.C.B. Gopinath, T.H. Tang, Y. Chen, M. Citartanet, T. Lakshmipriyaal, Biosens. Bioelectron. 60 (2014) 332-342.
doi: 10.1016/j.bios.2014.04.014
S.I. Traore, S. Khelaifia, N. Armstrong, J.C. Lagier, D. Raoult, Clin. Microbiol. Infect. 25 (2019) 1561. e1-1561. e5.
C.P. Mao, C.F. Xue, X.Z. Wang, et al., Talanta217 (2020) 121020.
doi: 10.1016/j.talanta.2020.121020
D.S. Reis, V.L. De Oliveira, M.L. Silva, et al., J. Mater. Chem. B9 (2021) 1414-1423.
doi: 10.1039/d0tb02309d
Y.L. Fang, C.H. Wang, Y.S. Chen, et al., Lab Chip21 (2021) 113.
doi: 10.1039/d0lc00966k
X.Y. Feng, X.Y. Meng, F.B. Xiao, Z.P. Aguilar, H.Y. Xu, Talanta225 (2021) 121953.
doi: 10.1016/j.talanta.2020.121953
I.H. Cho, J. Irudayaraj, Food Microbiol. 164 (2013) 70-75.
doi: 10.1016/j.ijfoodmicro.2013.02.025
B. Pang, C. Zhao, L. Li, et al., Anal. Biochem. 542 (2018) 58-62.
doi: 10.1016/j.ab.2017.11.010
S.C. Terry, J.H. Jerman, J.B. Angell, IEEE Trans. Electron Dev. 26 (1979) 1880-1886.
doi: 10.1109/T-ED.1979.19791
A.P.F. Turner, Science290 (2000) 1315-1317.
doi: 10.1126/science.290.5495.1315
J.G. Chen, Y.C. Xu, H. Yan, et al., Lab Chip18 (2018) 2441-2452.
doi: 10.1039/C8LC00399H
K. Tsougenia, G. Kaproua, C.M. Loukas, et al., Sens. Actuat. B Chem. 320 (2020) 128345.
doi: 10.1016/j.snb.2020.128345
D.C. Liu, Y.Z. Zhu, N. Li, et al., Sens. Actuat. B Chem. 310 (2020) 127834.
doi: 10.1016/j.snb.2020.127834
J. Yakovleva, R. Davidsson, A. Lobanova, Anal. Chem. 74 (2002) 2994-3004.
doi: 10.1021/ac015645b
Y. Yalikun, Y. Hosokawa, T. Iinob, Y. Tanaka, Lab Chip16 (2016) 2427-2433.
doi: 10.1039/C6LC00132G
S. Dochow, C. Beleites, T. Henkel, Anal. Bioanal. Chem. 405 (2013) 2743-2746.
doi: 10.1007/s00216-013-6726-3
H.J. Kim, S.J. Choi, Anal. Method12 (2020) 5621-5627.
doi: 10.1039/d0ay01735c
J. Nie, Q. Gao, Y.D. Wang, et al., Small14 (2018) 1802368.
doi: 10.1002/smll.201802368
L. Zhou, S.F. Mao, Q.S. Huang, X.W. He, J.M. Lin, Sci. China Chem. 61 (2018)1034-1042.
doi: 10.1007/s11426-018-9243-3
N. Xu, H.F. Lin, S. Lin, et al., Anal. Chem. 93 (2021) 2273-2280.
doi: 10.1021/acs.analchem.0c04147
Y.J. Zheng, Z.N. Wu, J.M. Lin, L. Lin, Chin. Chem. Lett. 31 (2020) 451-454.
doi: 10.1016/j.cclet.2019.07.036
S. Feng, S.F. Mao, Q. Zhang, W.W. Li, J.M. Lin, ACS Sens. 4 (2019) 521-527.
doi: 10.1021/acssensors.8b01696
I. Choopara, A. Suea-Ngam, Y. Teethaisong, et al., ACS Sens. 6 (2021) 742-751.
doi: 10.1021/acssensors.0c01405
K. Luo, J. Ryu, I.H. Seol, et al., ACS Appl. Mater. Interfaces11 (2019) 46472-46478.
doi: 10.1021/acsami.9b16075
J. Jiang, H.Y. Wu, Y. Su, Y. Liang, B.W. Shu, C.S. Zhang, Anal. Chem. 92 (2020) 7708-7716.
doi: 10.1021/acs.analchem.0c00669
Q.P. Shang, Y. Su, Y. Liang, et al., Anal. Bioanal. Chem. 412 (2020) 3787-3797.
doi: 10.1007/s00216-020-02633-5
A.U. Andar, M.S. Hasan, V. Srinivasan, et al., Anal. Chem. 91 (2019) 11004-11012.
doi: 10.1021/acs.analchem.9b01232
A.T. Abafogi, J. Kim, J. Lee, et al., Sensors20 (2020)1202.
doi: 10.3390/s20041202
N.M. Reis, J. Pivetal, A.L. Loo-Zazueta, J.M.S. Barros, A.D. Edwards, Lab Chip16 (2016a) 2891-2899.
doi: 10.1039/C6LC00332J
G.Z. Cai, L.Y. Zheng, M. Liao, et al., Microchim. Acta186 (2019) 757.
doi: 10.1007/s00604-019-3883-x
H. Xu, X. Mao, Q. Zeng, Anal. Chem. 81 (2009) 669-675.
doi: 10.1021/ac8020592
L. Lin, L. L Yi, F.H. Zhao, Chem. Sci. 11 (2020) 2744-2749.
doi: 10.1039/c9sc06185a
C.H. Su, M.H. Tsai, C.Y. Lin, et al., Biosens. Bioelectron. 159 (2020) 112148.
doi: 10.1016/j.bios.2020.112148
S.Y. Li, Y.Q. Jiang, X.Y. Yang, et al., Anal. Chim. Acta1150 (2021) 338229.
doi: 10.1016/j.aca.2021.338229
W.L. Zhang, Z.Y. He, L.L. Yi, Biosens. Bioelectron. 102 (2018) 652-660.
doi: 10.1016/j.bios.2017.12.017
M. Kwiatek, S. Parasion, A. Nakonieczna, J. Appl. Microbiol. 128 (2020) 985-1002.
doi: 10.1111/jam.14535
W. Hussain, M.W. Ullah, U. Farooq, A. Aziz, S.Q. Wang, Biosens. Bioelectron. 177 (2021) 112973.
doi: 10.1016/j.bios.2021.112973
P. Dow, K. Kotz, S. Gruszk, J. Holder, J. Fiering, Lab Chip18 (2018) 923-932.
doi: 10.1039/C7LC01180F
T.H. Liu, S.S. Cheng, H.L. You, M.S. Lee, G.B. Lee, Analyst144 (2019) 1210-1222.
doi: 10.1039/c8an01764f
K.H. Kim, S.J. Park, C.S. Park, et al., Biosens. Bioelectron. 167 (2020) 112514.
doi: 10.1016/j.bios.2020.112514
Z.H. Qiao, Y.C. Fu, C.Y. Lei, Y.B. Li, Food Control112 (2020) 107116.
doi: 10.1016/j.foodcont.2020.107116
X.Y. Ma, W. Ding, C. Wang, et al., Sens. Actuat. B Chem. 331 (2021) 129422.
doi: 10.1016/j.snb.2020.129422
F. Mi, M. Guan, C.M. Hu, et al., Analyst146 (2021) 429.
doi: 10.1039/d0an01459a
K. Kwon, H. Gwak, K.A. Hyun, B.S. Kwak, H.I. Jung, Sens. Actuat. B Chem. 294 (2019) 62-68.
doi: 10.1016/j.snb.2019.05.007
L.Y. Zheng, G.Z. Cai, S.Y. Wang, et al., Biosens. Bioelectron. 124-125 (2019) 143-149.
Y. Hou, G.Z. Cai, L.Y. Zheng, J.A. Lin, Food Control103 (2019) 186-193.
doi: 10.1016/j.foodcont.2019.04.008
F.C. Huang, R.Y. Guo, Li Xue, et al., Sens. Actuat. B Chem. 312 (2020) 127958.
doi: 10.1016/j.snb.2020.127958
D. Huang, J.X. Man, D. Jiang, J.Y. Zhao, N. Xiang, Electrophoresis41 (2020) 2166-2187.
doi: 10.1002/elps.202000134
X.G. Lu, J.J.M. Chow, S.H. Koo, et al., Anal. Chem. 92 (2020) 15579-15586.
doi: 10.1021/acs.analchem.0c03718
H. Li, P. Torab, K.E. Mach, PNAS116 (2019) 10270-10279.
doi: 10.1073/pnas.1819569116
L.Y. Zheng, G.Z. Cai, W.Z. Qi, et al., ACS Sens. 5 (2020) 65-72.
doi: 10.1021/acssensors.9b01472
H. Ahn, B.S. Batule, Y. Seok, M.G. Kim, Anal. Chem. 90 (2018) 10211-10216.
doi: 10.1021/acs.analchem.8b01309
L. Gopfert, M. Elsner, M. Seidel, Anal. Methods13 (2021) 552-557.
doi: 10.1039/d0ay02000a
H.X. Liu, X.M. Zhou, W.P. Liu, X.K. Yang, D. Xing, Anal. Chem. 88 (2016) 10191-10197.
doi: 10.1021/acs.analchem.6b02772
C.H. Wang, J.J. Wu, G.B. Lee, Sens. Actuat. B Chem. 284 (2019) 395-402.
doi: 10.1016/j.snb.2018.12.112
T. Li, G.Z. Ou, X.L. Chen, Anal. Chim. Acta. 1130 (2020) 20-28.
doi: 10.1016/j.aca.2020.07.031
T.N.D. Trinh, H.C. La, N.Y. Lee, ACS Sens. 4 (2019) 2754-2762.
doi: 10.1021/acssensors.9b01299
X.F. Wei, W. Zhou, S.T. Sanjay, et al., Anal. Chem. 90 (2018) 9888-9896.
doi: 10.1021/acs.analchem.8b02055
T. Huang, J.J. Yang, W.Q. Zhou, et al., Sens. Actuat. B Chem. 298 (2019) 126885.
doi: 10.1016/j.snb.2019.126885
A. Mühlig, T. Bocklitz, I. Labugger, Anal. Chem. 88 (2016) 7998-8004.
doi: 10.1021/acs.analchem.6b01152
E. Witkowska, A.M. Łasica, K. Niciski, J. Potempa, A. Kamiska, ACS Sens. 6 (2021) 1621-1635.
doi: 10.1021/acssensors.1c00166
H. Jiang, Z.K. Sun, Q. Guo, X. Weng, Biosens. Bioelectron. 182 (2021) 113191.
doi: 10.1016/j.bios.2021.113191
E. Cesewski, B.N. Johnson, Biosens. Bioelectron. 159 (2020) 112214.
doi: 10.1016/j.bios.2020.112214
Y. Hou, W. Tang, W.Z. Qi, X.J. Guo, J.H. Lin, Biosens. Bioelectron. 157 (2020) 112160.
doi: 10.1016/j.bios.2020.112160
Y.X. Li, T. Wang, J.M. Wu, Analyst146 (2021) 1151-1156.
doi: 10.1039/d0an02222e
J.L. Yu, H.H. Wu, L.Y. He, et al., Talanta225 (2021) 122062.
doi: 10.1016/j.talanta.2020.122062
D. Liu, J.X. Wang, L.L. Wu, et al., Trends Anal. Chem. 122 (2020) 115701.
doi: 10.1016/j.trac.2019.115701
Y.Z. Tao, H.C. Shen, K.Y. Deng, H.M. Zhang, C.Y. Yang, Sens. Actuat. B Chem. 339 (2021) 129730.
doi: 10.1016/j.snb.2021.129730
Y.D. Ma, K.H. Li, Y.H. Chen, et al., Lab Chip19 (2019) 3804-3814.
doi: 10.1039/c9lc00797k
N. Cheng, Y. Song, M.M.A. Zeinhom, ACS Appl. Mater. Interfaces9 (2017) 40671-40680.
doi: 10.1021/acsami.7b12734
S.Y. Wang, L.Y. Zheng, G.Z. Cai, et al., Biosens. Bioelectron. 140 (2019) 111333.
doi: 10.1016/j.bios.2019.111333
I.P. Alves, N.M. Reis, Biosens. Bioelectron. 145 (2019) 111624.
doi: 10.1016/j.bios.2019.111624
M.J. B Y. Man, An Li, et al., Food Chem. 354 (2021) 129578.
doi: 10.1016/j.foodchem.2021.129578
T. Kong, J.B. You, B. Zhang, et al., Lab Chip19 (2019) 1991-1999.
doi: 10.1039/c9lc00165d
R. Guo, S.Y. Wang, F.C. Huang, Sens. Actuat. B Chem. Sens. Actuat. B Chem. 284 (2019) 134-139.
doi: 10.1117/12.2523643
S. Kim, A. Romero-Lozano, D.S. Hwang, J.Y. Yoon, J. Hazard. Mater. 413 (2021) 125338.
doi: 10.1016/j.jhazmat.2021.125338
R. Paul, E. Ostermann, Y.T. Chen, Biosens. Bioelectron. 187 (2021) 113312.
doi: 10.1016/j.bios.2021.113312
S.H. Needs, H.M.I. Osborn, A.D. Edwards, J. Microbiol. Methods10.1016/j. mimet. 2021.106199.
doi: 10.1016/j.mimet.2021.106199
W. Zhou, J.J. Sun, X.J. Li, Anal. Chem. 92 (2020) 14830-14837.
doi: 10.1021/acs.analchem.0c03700
H.R. Huang, G.Y. Zhao, W.C. Dou, Biosens. Bioelectron. 107 (2018) 266-271.
doi: 10.1016/j.bios.2018.02.027
C.H. Kim, J. Park, S.J. Kim, et al., Sens. Actuat. B Chem. Sens. Actuat. B Chem. 320 (2020) 128346.
doi: 10.1016/j.snb.2020.128346
XY. Han, Y.H. Liu, J.X. Yin, M. Yue, Y. Mu, Food Res. Int. 143 (2021) 110246.
doi: 10.1016/j.foodres.2021.110246
K. Kant, M.A. Shahbazi, M.A. Shahbazi, V.P. Dave, et al., Biotechnol. Adv. 36 (2018) 1003-1024.
doi: 10.1016/j.biotechadv.2018.03.002
W.Z. Qi, L.Y. Zheng, S.H. Wang, et al., Biosens. Bioelectron. 178 (2021) 113020.
doi: 10.1016/j.bios.2021.113020
X.A. Jiang, W.W. Jing, X.T. Sun, et al., ACS Sens. 1 (2016) 958-962.
doi: 10.1021/acssensors.6b00282
X.X. Li, X.L. Zhang, Q. Liu, et al., ACS Sens. 3 (2018) 2095-2103.
doi: 10.1021/acssensors.8b00615
Z.N. Wu, Y.J. Zheng, L. Lin, et al., Angew. Chem. Int. Ed. 59 (2020) 2225-2229.
doi: 10.1002/anie.201911252
W.F. Zhang, N. Li, L. Lin, et al., Small16 (2020) 1903402.
doi: 10.1002/smll.201903402
N. Li, W.F. Zhang, Y.X. Li, J.M. Lin, J.M. Lin, Trends Anal. Chem. 117 (2019) 200-214.
doi: 10.1016/j.trac.2019.05.029
Q. Zhang, S. Feng, L. Lin, S.F. Mao, J.M. Lin, J.M. Lin, Chem. Soc. Rev. 50 (2021) 5333.
doi: 10.1039/d0cs01516d
Chang Liu , Tao Wu , Lijiao Deng , Xuzi Li , Xin Fu , Shuzhen Liao , Wenjie Ma , Guoqiang Zou , Hai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Chaohui Zheng , Jing Xi , Shiyi Long , Tianpei He , Rui Zhao , Xinyuan Luo , Na Chen , Quan Yuan . Persistent luminescence encoding for rapid and accurate oral-derived bacteria identification. Chinese Chemical Letters, 2025, 36(1): 110223-. doi: 10.1016/j.cclet.2024.110223
Meihui Liu , Xinyuan Zhou , Xiao Li , Zhenjie Xue , Tie Wang . Pushing the frontiers: Chip-based detection based on micro- and nano-structures. Chinese Chemical Letters, 2024, 35(4): 108875-. doi: 10.1016/j.cclet.2023.108875
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Yue Mao , Zhonghang Chen , Tiankai Sun , Wenyue Cui , Peng Cheng , Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Gaojian Yang , Zhiyang Li , Rabia Usman , Zhu Chen , Yuan Liu , Song Li , Hui Chen , Yan Deng , Yile Fang , Nongyue He . DNA walker induced "signal on" fluorescence aptasensor strategy for rapid and sensitive detection of extracellular vesicles in gastric cancer. Chinese Chemical Letters, 2025, 36(2): 109930-. doi: 10.1016/j.cclet.2024.109930
Yanqi Wu , Yuhong Guan , Peilin Huang , Hui Chen , Liping Bai , Zhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308
Weiwei He , Hongbo Zhang , Xudong Lin , Lili Zhu , Tingting Zheng , Hao Pei , Yang Tian , Min Zhang , Guoyue Shi , Lei Wu , Jianlong Zhao , Gulinuer Wumaier , Shengqing Li , Yufang Xu , Honglin Li , Xuhong Qian . Advancements in life-on-a-chip: The impact of "Beyond Limits Manufacturing" technology. Chinese Chemical Letters, 2024, 35(5): 109091-. doi: 10.1016/j.cclet.2023.109091
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
Feihu Wu , Gengwen Chen , Kaitao Lai , Shiqing Zhang , Yingchao Liu , Ruijian Luo , Xiaocong Wang , Pinzhi Cao , Yi Ye , Jiarong Lian , Junle Qu , Zhigang Yang , Xiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
Kezuo Di , Jie Wei , Lijun Ding , Zhiying Shao , Junling Sha , Xilong Zhou , Huadong Heng , Xujing Feng , Kun Wang . A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration. Chinese Chemical Letters, 2025, 36(2): 109911-. doi: 10.1016/j.cclet.2024.109911