Recent advances in droplet microfluidics for microbiology
-
* Corresponding authors.
E-mail addresses: xhyan@mail.hzau.edu.cn (X. Yan), wuliu@sdu.edu.cn (W. Liu).
Citation: Ziyi He, Hao Wu, Xianghua Yan, Wu Liu. Recent advances in droplet microfluidics for microbiology[J]. Chinese Chemical Letters, ;2022, 33(4): 1729-1742. doi: 10.1016/j.cclet.2021.08.059
Nat. Rev. Microbiol. 7 (2009) 174.
doi: 10.1038/nrmicro2106
A.K. Wessel, L. Hmelo, M.R. Parsek, M. Whiteley, Nat. Rev. Microbiol. 11 (2013) 337-348.
doi: 10.1038/nrmicro3010
F.L. Hellweger, R.J. Clegg, J.R. Clark, C.M. Plugge, J.U. Kreft, Nat. Rev. Microbiol. 14 (2016) 461-471.
doi: 10.1038/nrmicro.2016.62
Y. Ding, P.D. Howes, A.J. deMello, Anal. Chem. 92 (2020) 132-149.
doi: 10.1021/acs.analchem.9b05047
T.S. Kaminski, O. Scheler, P. Garstecki, Lab Chip16 (2016) 2168-2187.
doi: 10.1039/C6LC00367B
A. Suea-Ngam, P.D. Howes, M. Srisa-Art, A.J. deMello, Chem. Commun. 55 (2019) 9895-9903.
doi: 10.1039/c9cc04750f
K. Matula, F. Rivello, W.T.S. Huck, Adv. Biosyst. 4 (2020) e1900188.
doi: 10.1002/adbi.201900188
G.R. Huys, J. Raes, Curr. Opin. Microbiol. 44 (2018) 1-8.
doi: 10.1016/j.mib.2018.05.002
E.C. Carnes, D.M. Lopez, N.P. Donegan, et al., Nat. Chem. Biol. 6 (2010) 41-45.
doi: 10.1038/nchembio.264
S. Hengoju, M. Tovar, D.K.W. Man, S. Buchheim, M.A. Rosenbaum, Droplet microfluidics for microbial biotechnology, in: Adv. Biochem. Eng. /Biotechnol., Springer, Berlin, Heidelberg, 2020, pp. 1-29.
E.K. Bowman, H.S. Alper, Trends. Biotechnol. 38 (2020) 701-714.
doi: 10.1016/j.tibtech.2019.11.002
Y. Vervoort, A.G. Linares, M. Roncoroni, et al., Curr. Opin. Biotechnol. 46 (2017) 120-125.
doi: 10.1016/j.copbio.2017.02.011
S. Sohrabi, N. kassir, M.K. Moraveji, RSC Adv. 10 (2020) 27560-27574.
doi: 10.1039/d0ra04566g
F. Lan, B. Demaree, N. Ahmed, A.R. Abate, Nat. Biotechnol. 35 (2017) 640-646.
doi: 10.1038/nbt.3880
X. Jian, X. Guo, J. Wang, et al., Biotechnol. Bioeng. 117 (2020) 1724-1737.
doi: 10.1002/bit.27327
K. Churski, T.S. Kaminski, S. Jakiela, et al., Lab Chip12 (2012) 1629-1637.
doi: 10.1039/c2lc21284f
J. Chen, M. Vestergaard, J. Shen, et al., FEMS Microbiol. Lett. 365 (2018) fny258.
S. Goodwin, J.D. McPherson, W.R. McCombie, Nat. Rev. Genet. 17 (2016) 333-351.
doi: 10.1038/nrg.2016.49
E.A. Specht, E. Braselmann, A.E. Palmer, Annu. Rev. Physiol. 79 (2017) 93-117.
doi: 10.1146/annurev-physiol-022516-034055
L. Shang, Y. Cheng, Y. Zhao, Chem. Rev. 117 (2017) 7964-8040.
doi: 10.1021/acs.chemrev.6b00848
R. Dangla, S.C. Kayi, C.N. Baroud, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 853-858.
doi: 10.1073/pnas.1209186110
A. Lashkaripour, C. Rodriguez, L. Ortiz, D. Densmore, Lab Chip19 (2019) 1041-1053.
doi: 10.1039/c8lc01253a
Z.Z. Chong, S.H. Tan, A.M. Ganan-Calvo, et al., Lab Chip16 (2016) 35-58.
doi: 10.1039/C5LC01012H
R.R. Pompano, W. Liu, W. Du, R.F. Ismagilov, Anal. Chem. 4 (2011) 59-81.
doi: 10.1146/annurev.anchem.012809.102303
L. Cao, X. Cui, J. Hu, et al., Biosens. Bioelectron. 90 (2017) 459-474.
doi: 10.1016/j.bios.2016.09.082
H. Wu, X. Chen, X. Gao, et al., Anal. Chem. 90 (2018) 4303-4309.
doi: 10.1021/acs.analchem.8b00048
M. Sun, S.S. Bithi, S.A. Vanapalli, Lab Chip11 (2011) 3949-3952.
doi: 10.1039/c1lc20709a
L. Mazutis, J. Gilbert, W.L. Ung, et al., Nat. Protoc. 8 (2013) 870-891.
doi: 10.1038/nprot.2013.046
J. Overmann, B. Abt, J. Sikorski, Annu. Rev. Microbiol. 71 (2017) 711-730.
doi: 10.1146/annurev-micro-090816-093449
L. Boitard, D. Cottinet, N. Bremond, J. Baudry, J. Bibette, Eng. Life Sci. 15 (2015) 318-326.
doi: 10.1002/elsc.201400089
B. Hu, P. Xu, L. Ma, et al., Mar. Life Sci. Technol. 3 (2021) 169-188.
doi: 10.1007/s42995-020-00082-8
H. Liu, X. Xu, K. Peng, et al., Biotechnol. Bioeng. 118 (2021) 647-658.
doi: 10.1002/bit.27591
M. Tovar, L. Mahler, S. Buchheim, M. Roth, M.A. Rosenbaum, Microb. Cell Fact. 19 (2020) 16.
doi: 10.1186/s12934-020-1282-y
J. Cao, F. Kalensee, P.M. Günther, J.M. Köhler, Int. J. Environ. Sci. Technol. (Tehran)17 (2020) 1-16.
doi: 10.1007/s13762-019-02424-1
J. Cao, L. Hafermann, J.M. Köhler, Eng. Life Sci. 17 (2017) 792-800.
doi: 10.1002/elsc.201600264
P. Juskova, Y.R.F. Schmid, A. Stucki, et al., ACS Appl. Mater. Interfaces11 (2019) 34698-34706.
doi: 10.1021/acsami.9b12169
C.M.B. Ho, Q. Sun, A.J.T. Teo, et al., ACS Biomater. Sci. Eng. 6 (2020) 3630-3637.
doi: 10.1021/acsbiomaterials.0c00292
S. Deshpande, Y. Caspi, A.E. Meijering, C. Dekker, Nat. Commun. 7 (2016) 10447.
doi: 10.1038/ncomms10447
M.M. Villa, R.J. Bloom, J.D. Silverman, et al., mSystems5 (2020) e00864-19.
C.Y. Jiang, L. Dong, J.K. Zhao, et al., Appl. Environ. Microbiol. 82 (2016) 2210-2218.
doi: 10.1128/AEM.03588-15
B. Hu, B. Xu, J. Yun, et al., Lab Chip20 (2020) 363-372.
doi: 10.1039/c9lc00761j
D. Chen, S.J. Liu, W. Du, J. Hazard. Mater. 366 (2019) 512-519.
doi: 10.1016/j.jhazmat.2018.12.029
N. Zhou, Y.T. Sun, D.W. Chen, et al., Microbiologyopen8 (2019) e00654.
doi: 10.1002/mbo3.654
W.J. Watterson, M. Tanyeri, A.R. Watson, et al., eLife9 (2020) e56998.
doi: 10.7554/eLife.56998
Z. Jin, M. Nie, R. Hu, et al., Small14 (2018) 1800658.
doi: 10.1002/smll.201800658
L. Varadi, J.L. Luo, D.E. Hibbs, et al., Chem. Soc. Rev. 46 (2017) 4818-4832.
doi: 10.1039/C6CS00693K
M. Ferone, A. Gowen, S. Fanning, A.G.M. Scannell, Compr. Rev. Food. Sci. Food Saf. 19 (2020) 3106-3129.
doi: 10.1111/1541-4337.12618
K. Wink, L. Mahler, J.R. Beulig, et al., Anal. Bioanal. Chem. 410 (2018) 7679-7687.
doi: 10.1007/s00216-018-1383-1
L.C. Duarte, F. Figueredo, L.E.B. Ribeiro, E. Corton, W.K.T. Coltro, Anal. Chim. Acta1071 (2019) 36-43.
doi: 10.1016/j.aca.2019.04.045
M. Kogawa, M. Hosokawa, Y. Nishikawa, K. Mori, H. Takeyama, Sci. Rep. 8 (2018) 2059.
doi: 10.1038/s41598-018-20384-3
J.B. Harmon, H.K. Gray, C.C. Young, K.J. Schwab, PLoS One15 (2020) e0233239.
doi: 10.1371/journal.pone.0233239
H. Gai, Y. Li, E.S. Yeung, Top. Curr. Chem. 304 (2011) 171-201.
doi: 10.1007/128_2011_144
K. Hsieh, H.C. Zec, L. Chen, et al., Anal. Chem. 90 (2018) 9449-9456.
doi: 10.1021/acs.analchem.8b02096
X. Cui, L. Ren, Y. Shan, et al., Analyst143 (2018) 3309-3316.
doi: 10.1039/c8an00456k
M. Li, J. Xu, M. Romero-Gonzalez, S.A. Banwart, W.E. Huang, Curr. Opin. Biotechnol. 23 (2012) 56-63.
doi: 10.1016/j.copbio.2011.11.019
Y. He, X. Wang, B. Ma, J. Xu, Biotechnol. Adv. 37 (2019) 107388.
doi: 10.1016/j.biotechadv.2019.04.010
T. Xu, Y. Gong, X. Su, et al., Small16 (2020) 2001172.
doi: 10.1002/smll.202001172
X. Wang, Y. Xin, L. Ren, et al., Sci. Adv. 6 (2020) eabb3521.
doi: 10.1126/sciadv.abb3521
B. Chen, Y. Jiang, X. Cao, et al., Clin. Chim. Acta517 (2021) 156-161.
doi: 10.1016/j.cca.2021.02.008
P.L. Quan, M. Sauzade, E. Brouzes, Sensors18 (2018) 1271.
doi: 10.3390/s18041271
L. Cao, X. Cui, J. Hu, et al., Biosens. Bioelectron. 90 (2017) 459-474.
doi: 10.1016/j.bios.2016.09.082
X. Huang, X. Lin, K. Urmann, et al., Environ. Sci. Technol. 52 (2018) 6399-6407.
doi: 10.1021/acs.est.8b00241
G. Galazzo, N. van Best, B.J. Benedikter, et al., Front. Cell. Infect. Microbiol. 10 (2020) 403.
doi: 10.3389/fcimb.2020.00403
H. Pan, K. Dong, L. Rao, et al., Food Control112 (2020) 107140.
doi: 10.1016/j.foodcont.2020.107140
K. Zhu, B. Suttner, A. Pickering, K.T. Konstantinidis, J. Brown, Water Res. 183 (2020) 116085.
doi: 10.1016/j.watres.2020.116085
M.A. Caillaud, M. Abeilhou, I. Gonzalez, et al., Front. Microbiol. 11 (2020) 1906.
doi: 10.3389/fmicb.2020.01906
K. Grudlewska-Buda, K. Skowron, E. Gospodarek-Komkowska, AMB Express10 (2020) 75.
doi: 10.1186/s13568-020-01007-5
A. Bivins, S. Lowry, H.M. Murphy, et al., npj Clean Water3 (2020) 35.
doi: 10.1038/s41545-020-00081-3
L. Sun, S. Talarico, L. Yao, et al., J. Clin. Microbiol. 56 (2018) e00019-18.
C. Manzari, A. Oranger, B. Fosso, et al., Microb. Genom. 6 (2020) mgen000417.
J.T. Barlow, S.R. Bogatyrev, R.F. Ismagilov, Nat. Commun. 11 (2020) 2590.
doi: 10.1038/s41467-020-16224-6
B. Brooks, M.R. Olm, B.A. Firek, et al., Microbiome6 (2018) 112.
doi: 10.1186/s40168-018-0493-5
A.A. Kojabad, M. Farzanehpour, H.E.G. Galeh, et al., J. Med. Virol. 93 (2021) 4182-4197.
doi: 10.1002/jmv.26846
A. Christensen-Quick, M. Massanella, A. Frick, et al., J. Virol. 93 (2019) e00179-19.
S.A. Yukl, P. Kaiser, P. Kim, et al., Sci. Transl. Med. 10 (2018) eaap9927.
doi: 10.1126/scitranslmed.aap9927
M. Pichon, A. Gaymard, L. Josset, et al., Antiviral Res. 145 (2017) 160-167.
doi: 10.1016/j.antiviral.2017.07.021
A.C. Bateman, A.L. Greninger, E.E. Atienza, et al., Clin. Chem. 63 (2017) 761-769.
doi: 10.1373/clinchem.2016.265512
G. Dong, F. Meng, Y. Zhang, et al., J. Virol. Methods265 (2019) 59-65.
doi: 10.1016/j.jviromet.2018.09.005
Y. Jiang, A. Manz, W. Wu, Anal. Chim. Acta1125 (2020) 50-56.
doi: 10.3390/biomedicines8030050
L. Xu, H. Qu, D.G. Alonso, et al., Biosens. Bioelectron. 175 (2021) 112908.
doi: 10.1016/j.bios.2020.112908
Z. Yu, W. Lyu, M. Yu, et al., Biosens. Bioelectron. 155 (2020) 112107.
doi: 10.1016/j.bios.2020.112107
C.P. West, V.M. Montori, P. Sampathkumar, Mayo Clin. Proc. 95 (2020) 1127-1129.
doi: 10.1016/j.mayocp.2020.04.004
T. Suo, X. Liu, J. Feng, et al., Emerg. Microbes Infect. 9 (2020) 1259-1268.
doi: 10.1080/22221751.2020.1772678
F. Yu, L. Yan, N. Wang, et al., Clin. Infect. Dis. 71 (2020) 793-798.
doi: 10.1093/cid/ciaa345
S. Anderson, B. Hadwen, C. Brown, Lab Chip21 (2021) 962-975.
doi: 10.1039/d0lc01143f
L. Chen, V. Yadav, C. Zhang, et al., Anal. Chem. 93 (2021) 6456-6462.
doi: 10.1021/acs.analchem.1c00192
N.J. Loman, M.J. Pallen, Nat. Rev. Microbiol. 13 (2015) 787-794.
doi: 10.1038/nrmicro3565
J. Jo, J. Oh, C. Park, J. Microbiol. 58 (2020) 176-192.
doi: 10.1007/s12275-020-9525-5
L.W. Hugerth, A.F. Andersson, Front. Microbiol. 8 (2017) 1561.
doi: 10.3389/fmicb.2017.01561
R. Salomon, D. Kaczorowski, F. Valdes-Mora, et al., Lab Chip19 (2019) 1706-1727.
doi: 10.1039/c8lc01239c
K. Matuła, F. Rivello, W.T.S. Huck, Adv. Biosyst. 4 (2020) 1900188.
doi: 10.1002/adbi.201900188
E.Z. Macosko, A. Basu, R. Satija, et al., Cell161 (2015) 1202-1214.
doi: 10.1016/j.cell.2015.05.002
L. Liu, C. K. Dalal, B.M. Heineike, A.R. Abate, Lab Chip19 (2019) 1838-1849.
doi: 10.1039/c9lc00084d
S.J. Spencer, M.V. Tamminen, S.P. Preheim, et al., ISME J. 10 (2016) 427-436.
doi: 10.1038/ismej.2015.124
E.G. Sakowski, K. Arora-Williams, F. Tian, et al., Nat. Microbiol. 6 (2021) 630-642.
doi: 10.1038/s41564-021-00873-4
R.U. Sheth, M. Li, W. Jiang, et al., Nat. Biotechnol. 37 (2019) 877-883.
doi: 10.1038/s41587-019-0183-2
M. Hosokawa, Y. Nishikawa, M. Kogawa, H. Takeyama, Sci. Rep. 7 (2017) 5199.
doi: 10.1038/s41598-017-05436-4
N. Long, Y. Qiao, Z. Xu, J. Tu, Z. Lu, Quant. Biol. 8 (2020) 279-294.
doi: 10.1007/s40484-020-0217-2
E.K. Binga, R.S. Lasken, J.D. Neufeld, ISME J. 2 (2008) 233-241.
doi: 10.1038/ismej.2008.10
A.M. Sidore, F. Lan, S.W. Lim, A.R. Abate, Nucleic Acids Res. 44 (2016) e66.
doi: 10.1093/nar/gkv1493
X. Shi, C. Shao, C. Luo, et al., mSystems4 (2019) e00198-19.
doi: 10.1128/mSystems.00198-19
M.P. Terns, Mol. Cell72 (2018) 404-412.
doi: 10.1016/j.molcel.2018.09.018
J.S. Gootenberg, O.O. Abudayyeh, J.W. Lee, et al., Science356 (2017) 438.
doi: 10.1126/science.aam9321
C.M. Ackerman, C. Myhrvold, S.G. Thakku, et al., Nature582 (2020) 277-282.
doi: 10.1038/s41586-020-2279-8
T. Tian, B. Shu, Y. Jiang, et al., ACS Nano15 (2021) 1167-1178.
doi: 10.1021/acsnano.0c08165
C. Nathan, Nat. Rev. Microbiol. 18 (2020) 259-260.
doi: 10.1038/s41579-020-0348-5
A. van Belkum, C.A.D. Burnham, J.W.A. Rossen, et al., Nat. Rev. Microbiol. 18 (2020) 299-311.
doi: 10.1038/s41579-020-0327-x
A. van Belkum, T.T. Bachmann, G. Lüdke, et al., Nat. Rev. Microbiol. 17 (2019) 51-62.
doi: 10.1038/s41579-018-0098-9
N. Qin, P. Zhao, E.A. Ho, G. Xin, C.L. Ren, ACS Sens. 6 (2021) 3-21.
doi: 10.1021/acssensors.0c02175
H. Sammer-ul, Z. Xunli, Curr. Anal. Chem. 16 (2020) 41-51.
doi: 10.2174/1573411015666181224145845
C.M. Svensson, O. Shvydkiv, S. Dietrich, et al., Small15 (2019) 1970021.
doi: 10.1002/smll.201970021
T.J. Abram, H. Cherukury, C.Y. Ou, et al., Lab Chip20 (2020) 477-489.
doi: 10.1039/c9lc01212e
K. Zhang, S. Qin, S. Wu, Y. Liang, J. Li, Chem. Sci. 11 (2020) 6352-6361.
doi: 10.1039/d0sc01353f
A.M. Kaushik, K. Hsieh, L. Chen, et al., Biosens. Bioelectron. 97 (2017) 260-266.
doi: 10.1016/j.bios.2017.06.006
F. Lyu, M. Pan, S. Patil, et al., Sens. Actuators B Chem. 270 (2018) 396-404.
doi: 10.1016/j.snb.2018.05.047
W. Postek, P. Gargulinski, O. Scheler, T.S. Kaminski, P. Garstecki, Lab Chip18 (2018) 3668-3677.
doi: 10.1039/c8lc00916c
W. Kang, S. Sarkar, Z.S. Lin, S. McKenney, T. Konry, Anal. Chem. 91 (2019) 6242-6249.
doi: 10.1021/acs.analchem.9b00939
T. Pemovska, J.W. Bigenzahn, G. Superti-Furga, Curr. Opin. Pharmacol. 42 (2018) 102-110.
doi: 10.1016/j.coph.2018.07.008
M. Tyers, G.D. Wright, Nat. Rev. Microbiol. 17 (2019) 141-155.
doi: 10.1038/s41579-018-0141-x
A. Kulesa, J. Kehe, J.E. Hurtado, P. Tawde, P.C. Blainey, Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 6685-6690.
doi: 10.1073/pnas.1802233115
A. Mepham, J.D. Besant, A.W. Weinstein, et al., Lab Chip17 (2017) 1505-1514.
doi: 10.1039/C7LC00199A
M. Azizi, M. Zaferani, B. Dogan, et al., Anal. Chem. 90 (2018) 14137-14144.
doi: 10.1021/acs.analchem.8b03817
J. Avesar, D. Rosenfeld, M. Truman-Rosentsvit, et al., Proc. Natl. Acad. Sci. U.S.A. 114 (2017) E5787-E5795.
Q. Yi, D. Cai, M. Xiao, et al., Biosens. Bioelectron. 135 (2019) 200-207.
doi: 10.1016/j.bios.2019.04.003
S. Mashaghi, A.M. van Oijen, Biomicrofluidics10 (2016) 024102.
doi: 10.1063/1.4943126
R.W. Yucha, K.S. Hobbs, E. Hanhauser, et al., EBioMedicine20 (2017) 217-229.
doi: 10.1016/j.ebiom.2017.05.006
W. Liu, M.U. Caglar, Z. Mao, et al., Sci. Adv. 5 (2019) eaax4761.
doi: 10.1126/sciadv.aax4761
W. Liu, H. He, S.Y. Zheng, Trends Biotechnol. 38 (2020) 1360-1372.
doi: 10.1016/j.tibtech.2020.04.010
K. Faust, J. Raes, Nat. Rev. Microbiol. 10 (2012) 538-550.
doi: 10.1038/nrmicro2832
T.S. Tshikantwa, M.W. Ullah, F. He, G. Yang, Front. Microbiol. 9 (2018) 1156.
doi: 10.3389/fmicb.2018.01156
R.M. Braga, M.N. Dourado, W.L. Araújo, Braz. J. Microbiol. 47 (2016) 86-98.
doi: 10.1016/j.bjm.2016.10.005
L. Tang, Nat. Methods16 (2019) 19.
A.X. Lu, H. Oh, J.L. Terrell, W.E. Bentley, S.R. Raghavan, Chem. Sci. 8 (2017) 6893-6903.
doi: 10.1039/C7SC01335C
M. Tovar, S. Hengoju, T. Weber, et al., Anal. Chem. 91 (2019) 3055-3061.
doi: 10.1021/acs.analchem.8b05451
X. Guo, K.P.T. Silva, J.Q. Boedicker, Phys. Biol. 16 (2019) 036001.
doi: 10.1088/1478-3975/ab005f
J.Y. Tan, S. Wang, G.J. Dick, et al., Integr. Biol. 12 (2020) 263-274.
doi: 10.1093/intbio/zyaa021
D.N. Carruthers, C.K. Byun, B.J. Cardinale, X.N. Lin, Integr. Biol. 9 (2017) 687-694.
doi: 10.1039/C6IB00241B
S.S. Terekhov, I.V. Smirnov, A.V. Stepanova, et al., Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 2550-2555.
doi: 10.1073/pnas.1621226114
S.S. Terekhov, I.V. Smirnov, M.V. Malakhova, et al., Proc. Natl. Acad. Sci. U.S.A. 115 (2018) 9551-9556.
doi: 10.1073/pnas.1811250115
I.L. Brito, Nat. Rev. Microbiol. 19 (2021) 442-453.
doi: 10.1038/s41579-021-00534-7
I. Chen, D. Dubnau, Nat. Rev. Microbiol. 2 (2004) 241-249.
doi: 10.1038/nrmicro844
C.J.H. von Wintersdorff, J. Penders, J.M. van Niekerk, et al., Front. Microbiol. 7 (2016) 173.
T. Lam, M. Maienschein-Cline, D.T. Eddington, D.A. Morrison, Integr. Biol. 11 (2019) 415-424.
doi: 10.1093/intbio/zyz036
T. Lam, M.D. Brennan, D.A. Morrison, D.T. Eddington, Lab Chip19 (2019) 682-692.
doi: 10.1039/c8lc01367e
R.H. Hsu, R.L. Clark, J.W. Tan, et al., Cell Syst. 9 (2019) 229-242.
doi: 10.1016/j.cels.2019.06.008
J. Kehe, A. Kulesa, A. Ortiz, et al., Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 12804.
doi: 10.1073/pnas.1900102116
J. Ladau, E.A. Eloe-Fadrosh, Trends Microbiol. 27 (2019) 662-669.
doi: 10.1016/j.tim.2019.03.003
R.K. Kumar, T.A. Meiller-Legrand, A. Alcinesio, et al., Nat. Commun. 12 (2021) 857.
doi: 10.1007/978-3-030-70296-0_65
D.K. Maurya, A. Kumar, U. Chaurasiya, T. Hussain, S.K. Singh, 11-Modern era of microbial biotechnology: opportunities and future prospects, in: M.K. Solanki, P.L. Kashyap, R.A. Ansari, B. Kumari (Eds. ), Microbiomes and Plant Health, Academic Press, 2021, pp. 317-343.
L. Dufossé, M. Fouillaud, Front. Microbiol. 10 (2019) 2843.
doi: 10.3389/fmicb.2019.02843
S. Sudheer, R.G. Bai, Z. Usmani, M. Sharma, Curr. Genomics21 (2020) 321-333.
doi: 10.2174/1389202921999200603165934
J.V. Pham, M.A. Yilma, A. Feliz, et al., Front. Microbiol. 10 (2019) 1404.
doi: 10.3389/fmicb.2019.01404
Y. Vervoort, A.G. Linares, M. Roncoroni, et al., Curr. Opin. Biotechnol. 46 (2017) 120-125.
doi: 10.1016/j.copbio.2017.02.011
E.K. Bowman, H.S. Alper, Trends Biotechnol. 38 (2020) 701-714.
doi: 10.1016/j.tibtech.2019.11.002
X. Jian, X. Guo, J. Wang, et al., Biotechnol. Bioeng. 117 (2020) 1724-1737.
doi: 10.1002/bit.27327
J.A. Hernandez-Valdes, M. aan de Stegge, J. Hermans, et al., Metab. Eng. Commun. 11 (2020) e00133.
doi: 10.1016/j.mec.2020.e00133
L. Mahler, S. P. Niehs, K. Martin, et al., eLife10 (2021) e64774.
doi: 10.7554/eLife.64774
M. Napiorkowska, L. Pestalozzi, S. Panke, M. Held, S. Schmitt, Small17 (2021) 2005523.
doi: 10.1002/smll.202005523
M. Schirmer, K. Wink, S. Ohla, et al., Anal. Chem. 92 (2020) 10700-10708.
doi: 10.1021/acs.analchem.0c01839
T. Beneyton, S. Thomas, A.D. Griffiths, et al., Microb. Cell Fact. 16 (2017) 18.
doi: 10.1186/s12934-017-0629-5
L. Guo, W. Zeng, S. Xu, J. Zhou, Bioresour. Technol. 318 (2020) 124258.
doi: 10.1016/j.biortech.2020.124258
F. Ma, T. Guo, Y. Zhang, et al., Environ. Microbiol. 23 (2021) 996-1008.
doi: 10.1111/1462-2920.15257
A.S. Tauzin, M.R. Pereira, L.D. Van Vliet, et al., Microbiome8 (2020) 141.
doi: 10.1186/s40168-020-00911-z
P. Xu, C. Modavi, B. Demaree, et al., Nucleic Acids Res. 48 (2020) e48.
doi: 10.1093/nar/gkaa131
J.C. Baret, Lab Chip12 (2012) 422-433.
doi: 10.1039/C1LC20582J
N.M. Kovalchuk, E. Roumpea, E. Nowak, et al., Chem. Eng. Sci. 176 (2018) 139-152.
doi: 10.1016/j.ces.2017.10.026
T.C. Tang, E. Tham, X. Liu, et al., Nat. Chem. Biol. 17 (2021) 724-731.
doi: 10.1038/s41589-021-00779-6
S.D. Girolamo, C. Puorger, G. Lipps, Microb. Cell Fact. 19 (2020) 170.
doi: 10.1186/s12934-020-01427-9
Z. Xu, S. Wang, C. Zhao, et al., Nat. Commun. 11 (2020) 5985.
doi: 10.1038/s41467-020-19823-5
P. Gruner, B. Riechers, B. Semin, et al., Nat. Commun. 7 (2016) 10392.
doi: 10.1038/ncomms10392
M. Weitz, A. Mückl, K. Kapsner, et al., J. Am. Chem. Soc. 136 (2014) 72-75.
doi: 10.1021/ja411132w
S. Bianchi, F. Saglimbeni, G. Frangipane, D. Dell'Arciprete, R. Di Leonardo, Soft Matter15 (2019) 3397-3406.
doi: 10.1039/c9sm00077a
P. Xu, X. Zheng, Y. Tao, W. Du, Anal. Chem. 88 (2016) 3171-3177.
doi: 10.1021/acs.analchem.5b04510
F. Huang, Z. Zhu, Y. Niu, et al., Lab Chip20 (2020) 1249-1258.
doi: 10.1039/d0lc00111b
S.Y. Tang, K. Wang, K. Fan, et al., Anal. Chem. 91 (2019) 3725-3732.
doi: 10.1021/acs.analchem.9b00093
Z. Chen, P. Liao, F. Zhang, et al., Lab Chip17 (2017) 235-240.
doi: 10.1039/C6LC01305H
Y. Zhang, Q. Zhao, D. Yuan, et al., Lab Chip20 (2020) 4592-4599.
doi: 10.1039/d0lc00939c
B. Shi, D. Wu, Y. Jiang, J. An, W. Wu, Adv. Mater. Interfaces7 (2020) 2001074.
doi: 10.1002/admi.202001074
L. Mei, M. Jin, S. Xie, et al., Lab Chip18 (2018) 2806-2815.
doi: 10.1039/C8LC00479J
Z. He, J. Wang, B.J. Fike, et al., Biosens. Bioelectron. 191 (2021) 113458.
doi: 10.1016/j.bios.2021.113458
Deli Chen , Jiawen Li , Xudong Xu , Zhaocui Sun , Yun Yang , Minghui Xu , Hanqiao Liang , Junshan Yang , Hui Meng , Guoxu Ma , Jianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Yiqiao Chen , Ao Liu , Biwen Yang , Zhenzhen Li , Binggang Ye , Zhouyi Guo , Zhiming Liu , Haolin Chen . Photoluminescence and photothermal conversion in boric acid derived carbon dots for targeted microbial theranostics. Chinese Chemical Letters, 2024, 35(9): 109295-. doi: 10.1016/j.cclet.2023.109295
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2024.100200
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Fengkai Zou , Borui Su , Han Leng , Nini Xin , Shichao Jiang , Dan Wei , Mei Yang , Youhua Wang , Hongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Pu Zhang , Xiang Mao , Xuehua Dong , Ling Huang , Liling Cao , Daojiang Gao , Guohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Tiantian Man , Fulin Zhu , Yaqi Huang , Yuhao Piao , Yan Su , Shengyuan Deng , Ying Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036
Meijuan Chen , Liyun Zhao , Xianjin Shi , Wei Wang , Yu Huang , Lijuan Fu , Lijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336