A mini review: Constructing perovskite p-n homojunction solar cells
-
* Corresponding author.
E-mail address: iamzysun@njtech.edu.cn (Z. Sun).
Citation: Yanan Sun, Wei Chen, Zhengyi Sun. A mini review: Constructing perovskite p-n homojunction solar cells[J]. Chinese Chemical Letters, ;2022, 33(4): 1772-1778. doi: 10.1016/j.cclet.2021.08.055
B. Saparov, D.B. Mitzi, Chem. Rev. 116(2016) 4558-4596.
doi: 10.1021/acs.chemrev.5b00715
M.I. Saidaminov, O.F. Mohammed, O.M. Bakr, ACS Energy Lett. 2(2017) 889-896.
doi: 10.1021/acsenergylett.6b00705
O. Ergen, S.M. Gilbert, T. Pham, et al., Nat. Mater. 16(2016) 522-525.
S. Sun, T. Salim, N. Mathews, et al., Energy Environ. Sci. 7(2014) 399-407.
doi: 10.1039/C3EE43161D
V. D'Innocenzo, G. Grancini, M.J. Alcocer, et al., Nat. Commun. 5(2014) 3586.
doi: 10.1038/ncomms4586
A. Miyata, A. Mitioglu, P. Plochocka, et al., Nat. Phys. 11(2015) 582-587.
doi: 10.1038/nphys3357
M. Saba, M. Cadelano, D. Marongiu, et al., Nat. Commun. 5(2014) 5049.
doi: 10.1038/ncomms6049
J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6(2013) 1739-1743.
doi: 10.1039/c3ee40810h
A. Marchioro, J. Teuscher, D. Friedrich, et al., Nat. Photonics 8(2014) 250-255.
doi: 10.1038/nphoton.2013.374
S.D. Stranks, G.E. Eperon, G. Grancini, et al., Science 342(2013) 341-344.
doi: 10.1126/science.1243982
G. Xing, N. Mathews, S. Sun, et al., Science 342(2013) 344-347.
doi: 10.1126/science.1243167
R.E. Brandt, J.R. Poindexter, P. Gorai, et al., Chem. Mater. 29(2017) 4667-4674.
doi: 10.1021/acs.chemmater.6b05496
L.K. Ono, S.F. Liu, Y. Qi, Angew. Chem. Int. Ed. 59(2020) 6676-6698.
doi: 10.1002/anie.201905521
K.X. Steirer, P. Schulz, G. Teeter, et al., ACS Energy Lett. 1(2016) 360-366.
doi: 10.1021/acsenergylett.6b00196
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131(2009) 6050-6051.
doi: 10.1021/ja809598r
C. Zuo, H.J. Bolink, H. Han, et al., Adv. Sci. 3(2016) 1500324.
doi: 10.1002/advs.201500324
Z. Zhao, W. Sun, Y. Li, et al., J. Mater. Chem. A 5(2017) 4756-4773.
doi: 10.1039/C6TA10305G
H. Chen, Adv. Funct. Mater. 27(2017) 1605654.
doi: 10.1002/adfm.201605654
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Chem. Rev. 119(2019) 3193-3295.
doi: 10.1021/acs.chemrev.8b00318
K.G. Lim, S. Ahn, T.W. Lee, J. Mater. Chem. C 6(2018) 2915-2924.
doi: 10.1039/C8TC00166A
S. Wang, T. Sakurai, W. Wen, Y. Qi, Adv. Mater. Interfaces 5(2018) 1800260.
doi: 10.1002/admi.201800260
K. Mahmood, S. Sarwar, M.T. Mehran, RSC Adv. 7(2017) 17044-17062.
doi: 10.1039/C7RA00002B
W.Q. Wu, D. Chen, R.A. Caruso, Y.B. Cheng, J. Mater. Chem. A 5(2017) 10092-10109.
doi: 10.1039/C7TA02376F
R. Singh, P.K. Singh, B. Bhattacharya, H.W. Rhee, Appl. Mater. Today 14(2019) 175-200.
doi: 10.1016/j.apmt.2018.12.011
B. Li, D. Binks, G. Cao, J. Tian, Small 15(2019) 1903613.
doi: 10.1002/smll.201903613
T. Li, Y. Pan, Z. Wang, et al., J. Mater. Chem. A 5(2017) 12602-12652.
doi: 10.1039/C7TA01798G
A. Rajagopal, K. Yao, A.K. Jen, Adv. Mater. 30(2018) 1800455.
doi: 10.1002/adma.201800455
X. Zhang, L. Li, Z. Sun, J. Luo, Chem. Soc. Rev. 48(2019) 517-539.
doi: 10.1039/C8CS00563J
C. Ran, J. Xu, W. Gao, C. Huang, S. Dou, Chem. Soc. Rev. 47(2018) 4581-4610.
doi: 10.1039/C7CS00868F
P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao, Adv. Energy Mater. 9(2019) 1803017.
doi: 10.1002/aenm.201803017
D.H. Kang, N.G. Park, Adv. Mater. 31(2019) 1805214.
doi: 10.1002/adma.201805214
J. Chen, X. Cai, D. Yang, et al., J. Power Sources 355(2017) 98-133.
doi: 10.1016/j.jpowsour.2017.04.025
J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, Nanoscale 3(2011) 4088-4093.
doi: 10.1039/c1nr10867k
H.S. Kim, C.R. Lee, J.H. Im, et al., Sci. Rep. 2(2012) 591.
doi: 10.1038/srep00591
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338(2012) 643-647.
doi: 10.1126/science.1228604
N.J. Jeon, J.H. Noh, W.S. Yang, et al., Nature 517(2015) 476-480.
doi: 10.1038/nature14133
W.S. Yang, J.H. Noh, N.J. Jeon, et al., Science 348(2015) 1234-1237.
doi: 10.1126/science.aaa9272
G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Adv. Funct. Mater. 24(2014) 151-157.
doi: 10.1002/adfm.201302090
M. Liu, M.B. Johnston, H.J. Snaith, Nature 501(2013) 395-398.
doi: 10.1038/nature12509
H.P. Zhou, Q. Chen, G. Li, S. Luo, Science 345(2014) 542-546.
doi: 10.1126/science.1254050
D. Yang, R.X. Yang, K. Wang, C.C. Wu, X. Zhu, Nat. Commun. 9(2018) 3239.
doi: 10.1038/s41467-018-05760-x
J.Y. Jeng, Y.F. Chiang, M.H. Lee, et al., Adv. Mater. 25(2013) 3727-3732.
doi: 10.1002/adma.201301327
J.B. You, Z.R. Hong, Y. Yang, Q. Chen, ACS Nano 8(2014) 1674-1680.
doi: 10.1021/nn406020d
Y. Lv, P. Xu, G. Ren, et al., ACS Appl. Mater. Interfaces 10(2018) 23928-23937.
doi: 10.1021/acsami.8b07346
L. Etgar, P. Gao, Z. Xue, et al., J. Am. Chem. Soc. 134(2012) 17396-17399.
doi: 10.1021/ja307789s
K.W. Tsai, C.C. Chueh, S.T. Williams, T.C. Wen, A.K.Y. Jen, J. Mater. Chem. A 3(2015) 9128-9132.
doi: 10.1039/C5TA01343G
J. Shi, J. Dong, S. Lv, et al., Appl. Phys. Lett. 104(2014) 063901.
doi: 10.1063/1.4864638
Y. Li, S. Ye, W. Sun, et al., J. Mater. Chem. A 3(2015) 18389-18394.
doi: 10.1039/C5TA05989E
D.Y. Liu, J.L. Yang, T.L. Kelly, J. Am. Chem. Soc. 136(2014) 17116-17122.
doi: 10.1021/ja508758k
W. Ke, G. Fang, J. Wan, et al., Nat. Commun. 6(2015) 6700.
doi: 10.1038/ncomms7700
H. Yu, J. Ryu, J.W. Lee, et al., ACS Appl. Mater. Interfaces 9(2017) 8113-8120.
doi: 10.1021/acsami.6b15710
P. Zhao, M. Han, W. Yin, et al., ACS Appl. Mater. Interfaces 10(2018) 10132-10140.
doi: 10.1021/acsami.8b00021
J.F. Liao, W.Q. Wu, Y. Jiang, et al., Chem. Soc. Rev. 49(2020) 354-381.
doi: 10.1039/C8CS01012A
J. Chen, Y. Rong, A. Mei, et al., Adv. Energy Mater. 6(2016) 1502009.
doi: 10.1002/aenm.201502009
S. Aharon, A. Dymshits, A. Rotem, L. Etgar, J. Mater. Chem. A 3(2015) 9171-9178.
doi: 10.1039/C4TA05149A
W.A. Laban, L. Etgar, Energy Environ. Sci. 6(2013) 3249-3253.
doi: 10.1039/c3ee42282h
B. Lee, C.C. Stoumpos, N. Zhou, et al., J. Am. Chem. Soc. 136(2014) 15379-15385.
doi: 10.1021/ja508464w
I. Chung, B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, Nature 485(2012) 486-489.
doi: 10.1038/nature11067
J.H. Heo, S.H. Im, J.H. Noh, et al., Nat. Photonics 7(2013) 486-491.
doi: 10.1038/nphoton.2013.80
F. Zhang, X. Yang, H. Wang, et al., ACS Appl. Mater. Interfaces 6(2014) 16140-16146.
doi: 10.1021/am504175x
H. Zhou, Y. Shi, Q. Dong, et al., J. Phys. Chem. Lett. 5(2014) 3241-3246.
doi: 10.1021/jz5017069
L. Liu, A. Mei, T. Liu, et al., J. Am. Chem. Soc. 137(2015) 1790-1793.
doi: 10.1021/ja5125594
L. Liu, Q. Xi, G. Gao, et al., Sol. Energ. Mat. Sol. C 157(2016) 937-942.
doi: 10.1016/j.solmat.2016.08.013
Y. Zhang, X. Hu, L. Chen, et al., Org. Electron. 30(2016) 281-288.
doi: 10.1016/j.orgel.2016.01.002
X. Sun, T. Lin, Q. Song, et al., RSC Adv. 7(2017) 45320-45326.
doi: 10.1039/C7RA08680F
Y. Liao, X. Jiang, W. Zhou, et al., Front. Optoelectron. 10(2017) 103-110.
doi: 10.1007/s12200-017-0716-6
B. Li, Y. Zhang, L. Zhang, L. Yin, Adv. Mater. 29(2017) 1701221.
doi: 10.1002/adma.201701221
Y. Xiao, C. Wang, K.K. Kondamareddy, et al., ACS Appl. Energy Mater. 1(2018) 5453-5462.
W.Q. Wu, Q. Wang, Y. Fang, et al., Nat. Commun. 9(2018) 1625.
doi: 10.1038/s41467-018-04028-8
P. Cui, D. Wei, J. Ji, et al., Sol. RRL 1(2017) 1600027.
doi: 10.1002/solr.201600027
Q. Wang, Y. Shao, H. Xie, et al., Appl. Phys. Lett. 105(2014) 163508.
doi: 10.1063/1.4899051
L. Huang, S. Bu, D. Zhang, et al., Sol. RRL 3(2019) 1800274.
doi: 10.1002/solr.201800274
Z. Wei, K. Yan, H. Chen, et al., Energy Environ. Sci. 7(2014) 3326-3333.
doi: 10.1039/C4EE01983K
Q. Hu, J. Wu, C. Jiang, et al., ACS Nano 8(2014) 10161-10167.
doi: 10.1021/nn5029828
L. Huang, Z. Hu, J. Xu, et al., Sol. Energy Mater. Sol. Cells 149(2016) 1-8.
doi: 10.1016/j.solmat.2015.12.033
E. Zheng, X.F. Wang, J. Song, et al., ACS Appl. Mater. Interfaces 7(2015) 18156-18162.
doi: 10.1021/acsami.5b05787
X. Xu, Q. Chen, Z. Hong, et al., Nano Lett. 15(2015) 6514-6520.
doi: 10.1021/acs.nanolett.5b02126
L. Huang, J. Xu, X. Sun, et al., ACS Appl. Mater. Interfaces 8(2016) 9811-9820.
doi: 10.1021/acsami.6b00544
J. Pascual, I. Kosta, T. Tuyen Ngo, et al., ChemSusChem 9(2016) 2679-2685.
doi: 10.1002/cssc.201600940
H. Yu, J.W. Lee, J. Yun, et al., Adv. Energy Mater. 7(2017) 1700749.
doi: 10.1002/aenm.201700749
Z. Hu, H. Xiang, M. Schoenauer Sebag, et al., Chem. Commun. (Camb. ) 54(2018) 2623-2626.
doi: 10.1039/C7CC06183H
T. Chen, T. Shi, X. Li, et al., Sol. RRL 2(2018) 1800167.
doi: 10.1002/solr.201800167
J.F. Liao, W.Q. Wu, Y. Jiang, D.B. Kuang, L. Wang, Sol. RRL 3(2019) 1800268.
doi: 10.1002/solr.201800268
Q. Han, J. Ding, Y. Bai, et al., Chem 4(2018) 2405-2417.
doi: 10.1016/j.chempr.2018.08.004
C. Huang, P. Lin, N. Fu, et al., Chem. Commun. (Camb. ) 55(2019) 2777-2780.
doi: 10.1039/C9CC00312F
B. Danekamp, C. Muller, M. Sendner, et al., J. Phys. Chem. Lett. 9(2018) 2770-2775.
doi: 10.1021/acs.jpclett.8b00964
P. Cui, D. Wei, J. Ji, et al., Nat. Energy 4(2019) 150-159.
doi: 10.1038/s41560-018-0324-8
Q. Ou, Y. Zhang, Z. Wang, et al., Adv. Mater. 30(2018) 1705792.
doi: 10.1002/adma.201705792
H. Sun, K. Deng, J. Xiong, L. Li, Adv. Energy Mater. 10(2020) 1903347.
doi: 10.1002/aenm.201903347
C. Chen, Z. Song, C. Xiao, et al., Nano Energy 61(2019) 141-147.
doi: 10.1016/j.nanoen.2019.04.069
L. Ren, M. Wang, M. Li, et al., Opt. Mater. 100(2020) 109687.
doi: 10.1016/j.optmat.2020.109687
Z. Xiao, Y. Yuan, Y. Shao, et al., Nat. Mater. 14(2015) 193-198.
doi: 10.1038/nmat4150
J. Liu, Q. Zhou, N.K. Thein, et al., J. Mater. Chem. A 7(2019) 13777-13786.
doi: 10.1039/C9TA02772F
Q. Zhao, A. Hazarika, X. Chen, et al., Nat. Commun. 10(2019) 2842.
doi: 10.1038/s41467-019-10856-z
D. Song, P. Cui, T. Wang, D. Wei, J. Phys. Chem. C 119(2015) 22812-22819.
doi: 10.1021/acs.jpcc.5b06859
G. Paul, S. Chatterjee, H. Bhunia, A.J. Pal, J. Phys. Chem. C 122(2018) 20194-20199.
doi: 10.1021/acs.jpcc.8b06968
Q. Chen, L. Chen, F. Ye, et al., Nano Lett. 17(2017) 3231-3237.
doi: 10.1021/acs.nanolett.7b00847
S. Zhou, Y. Ma, G. Zhou, et al., ACS Energy Lett. 4(2019) 534-541.
doi: 10.1021/acsenergylett.8b02478
Z. Chen, C. Yu, K. Shum, et al., J. Lumin. 132(2012) 345-349.
doi: 10.1016/j.jlumin.2011.09.006
Z. Chen, J.J. Wang, Y. Ren, C. Yu, K. Shum, Appl. Phys. Lett. 101(2012) 093901.
doi: 10.1063/1.4748888
J. Duan, Y. Zhao, B. He, Q. Tang, Small 14(2018) 1704443.
doi: 10.1002/smll.201704443
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Xin Dong , Jing Liang , Zhijin Xu , Huajie Wu , Lei Wang , Shihai You , Junhua Luo , Lina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Botao Gao , He Qi , Hui Liu , Jun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Zhijie Zhang , Xun Li , Huiling Tang , Junhao Wu , Chunxia Yao , Kui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Bo Yang , Pu-An Lin , Tingwei Zhou , Xiaojia Zheng , Bing Cai , Wen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425
Rongjun Zhao , Tai Wu , Yong Hua , Yude Wang . Improving performance of perovskite solar cells enabled by defects passivation and carrier transport dynamics regulation via organic additive. Chinese Chemical Letters, 2025, 36(2): 109587-. doi: 10.1016/j.cclet.2024.109587
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352