Revisiting lithium-storage mechanisms of molybdenum disulfide
-
* Corresponding authors.
E-mail addresses: wanglonglu@hnu.edu.cn (L. Wang), iamqzhao@njupt.edu.cn (Q. Zhao).
Citation:
Chun Sun, Mingming Liu, Longlu Wang, Lingbin Xie, Weiwei Zhao, Jianmin Li, Shujuan Liu, Dafeng Yan, Qiang Zhao. Revisiting lithium-storage mechanisms of molybdenum disulfide[J]. Chinese Chemical Letters,
;2022, 33(4): 1779-1797.
doi:
10.1016/j.cclet.2021.08.052
Y. Fang, Y.Y. Lv, F. Gong, et al., Adv. Mater. 28 (2016) 9385–9390
doi: 10.1002/adma.201602210
D.B. Kong, H.Y. He, Q. Song, et al., Energy Environ. Sci. 7 (2014) 3320–3325
doi: 10.1039/C4EE02211D
J.B. Goodenough, K. Park, J. Am. Chem. Soc. 135 (2013) 1167–1176
doi: 10.1021/ja3091438
B. Scrosati, J. Garche, J. Power Sources 195 (2010) 2419–2430
doi: 10.1016/j.jpowsour.2009.11.048
M.S. Whittingham, Chem. Rev. 104 (2004) 4271–4302
doi: 10.1021/cr020731c
L.L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Chem. Eng. J. 405 (2021) 127028
doi: 10.1016/j.cej.2020.127028
Z.S. Wu, W. Ren, L. Xu, F. Li, H.M. Cheng, ACS Nano 5 (2011) 5463–5471
doi: 10.1021/nn2006249
Z. Y Zhang, S.L. Wu, J.Y. Cheng, W.J. Zhang, Energy Storage Mater. 15 (2018) 65–74
doi: 10.1016/j.ensm.2018.03.013
Y. Shi, Y. Wang, J.I. Wong, et al., Sci. Rep. 3 (2013) 2169
doi: 10.1038/srep02169
H. Hwang, H. Kim, J. Cho, Nano Lett. 11 (2011) 4826–4830
doi: 10.1021/nl202675f
B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6 (2011) 147–150
doi: 10.1038/nnano.2010.279
O. Sanchez, D. Lembke, M. Kayci, et al., Nat. Nanotechnol. 8 (2013). 497–501
doi: 10.1038/nnano.2013.100
J Xiao, D. Choi, L. Cosimbescu, et al., Chem. Mater. 22 (2010) 4522–4524
doi: 10.1021/cm101254j
H. Wang, Z. Lu, S. Xu, et al., PNAS. 110 (2013) 19701–19706
doi: 10.1073/pnas.1316792110
H.S.S.R. Matte, A. Gomathi, A.K. Manna, et al., Angew. Chem. Int. Ed. 49 (2010) 4059–4062
doi: 10.1002/anie.201000009
D.J. Late, B Liu, H.S.S.R. Matte, et al., ACS Nano 6 (2012) 5635–5641
doi: 10.1021/nn301572c
K. Chang, W.X. Chen, ACS Nano 5 (2011) 4720–4728
doi: 10.1021/nn200659w
C. Zhu, X. Mu, P.A.V. Aken, et al., Angew. Chem. Int. Ed. 53 (2014) 2152–2156
doi: 10.1002/anie.201308354
F. Wang, F. G Li, L. Ma, M.J. Zheng, Chem. Eur. J. 25 (2019) 14598–14603
doi: 10.1002/chem.201902624
B. Chen, Y. Meng, F. He, et al., Nano Energy 41 (2017) 154–163
doi: 10.1016/j.nanoen.2017.09.027
J. Zhou, J. Qin, N. Zhao, et al., J. Mater. Chem. A 4 (2016) 8734–8741
doi: 10.1039/C6TA02565J
L. Wang, Z. Xu, W. Wang, X. Bai, J. Am. Chem. Soc. 136 (2014) 6693–6697
doi: 10.1021/ja501686w
X. Fang, C. Hua, X. Guo, et al., Electrochim. Acta 81 (2012) 155–160
doi: 10.1016/j.electacta.2012.07.020
L. Zhang, D. Sun, J. Kang, et al., Nano Lett. 18 (2018) 1466–1475
doi: 10.1021/acs.nanolett.7b05246
Z.Q. Zhu, S.B. Xi, L.C. Miao, et al., Adv. Funct. Mater. 29 (2019) 1904843
doi: 10.1002/adfm.201904843
X. Xiong, W. Luo, X. Hu, et al., Sci. Rep. 5 (2015) 9254
doi: 10.1038/srep09254
Z. Wan, J. Shao, J. Yun, et al., Small 10 (2014) 4975–4981
doi: 10.1002/smll.201401286
M. Acerce, D. Voiry, M. Chhowalla, et al., Nat. Nanotechnol. 10 (2015) 313–318
doi: 10.1038/nnano.2015.40
L. Wang, Q. Zhang, J. Zhu, et al., Energy Storage Mater. 16 (2019) 37–45
doi: 10.1016/j.ensm.2018.04.025
A. Samad, A. Shafique, Y.H. Shin et al., Nanotechnology 28 (2017) 175401
doi: 10.1088/1361-6528/aa6536
M. Kan, J.Y. Wang, X.W. Li, et al., J. Phys. Chem. C 118 (2014) 1515–1522
doi: 10.1021/jp4076355
A. Splendiani, L. Sun, Y. Zhang, et al., Nano Lett. 10 (2010) 1271–1275
doi: 10.1021/nl903868w
K.F. Mak, C. Lee, J. Hone, et al., Phys. Rev. Lett. 105 (2010) 136805
doi: 10.1103/PhysRevLett.105.136805
W.J. Li, E.W. Shi, J.M. Ko, et al., J. Cryst. Growth 250 (2003) 418–422
doi: 10.1016/S0022-0248(02)02412-0
K. Kang, S. Xie, L. Huang, et al., Nature 520 (2015) 656–660
doi: 10.1038/nature14417
D. Vollath, D.V. Szabo, Mater. Lett. 35 (1998) 236–244
doi: 10.1016/S0167-577X(97)00247-4
N. Sano, H. Wang, M. Chhowalla, et al., Chem. Phys Lett. 368 (2003) 331–337
doi: 10.1016/S0009-2614(02)01884-5
M.P. Zach, K. Inazu, K.H. Ng, J.C. Hemminger, R.M. Penner, Chem. Mater. 14 (2002) 3206–3216
doi: 10.1021/cm020249a
Q. He, L. Wang, K. Yin, et al., Nanoscale Res. Lett. 13 (2018) 167
doi: 10.1186/s11671-018-2570-x
X. Geng, W. Sun, W. Wu, et al., Nat. Commun. 7 (2016) 10672
doi: 10.1038/ncomms10672
W. Ding, L. Hu, J. Dai, et al., ACS Nano 13 (2019) 1694–1702
L. Wang, X. Liu, J. Lu, et al., Angew. Chem. Int. Ed. 56 (2017) 7610–7614
doi: 10.1002/anie.201703066
J. Zhou, M. Guo, L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171
doi: 10.1016/j.cej.2019.02.079
Q. Liu, X. Li, Q. He, et al., Small 11 (2015) 5556–5564
doi: 10.1002/smll.201501822
X. Cao, Y. Shi, W. Shi, et al., Small 9 (2013) 3433–3438
doi: 10.1002/smll.201202697
Y.M. Chen, X.Y. Yu, Z. Li, et al., Sci. Adv. 2 (2016) 1600021
doi: 10.1126/sciadv.1600021
L. Zhang, H.B. Wu, Y. Yan et al., Energy Environ. Sci. 7 (2014) 3302–3306
doi: 10.1039/C4EE01932F
L. Yang, S. Wang, J. Mao, et al., Adv. Mater. 25 (2013) 1180–1184
doi: 10.1002/adma.201203999
N.P. Kondekar, M.G. Boebinger, E.V. Woods, et al., ACS Appl. Mater. Interfaces 9 (2017) 32394–32404
doi: 10.1021/acsami.7b10230
S.H. Yu, M.J. Zachman, K. Kang, et al., Adv. Energy Mater. 9 (2019) 1902773
doi: 10.1002/aenm.201902773
J. Wan, Y. Hao, Y. Shi, et al., Nat. Commun. 10 (2019) 3265
doi: 10.1038/s41467-019-11197-7
J. Zhang, A. Yang, X. Wu, et al., Nat. Commun. 9 (2018) 5289
doi: 10.1038/s41467-018-07710-z
S. Calvin, XAFS for Everyone, CRC Press, Florida, 2013
C.S. Schnohr, M.C. Ridgway, X-Ray Absorption Spectroscopy of Semiconductors., Springer, Berlin, 2015
J.B. Cook, T.C. Lin, H.S. Kim et al., ACS Nano 13 (2019) 1223–1231
S.Y. Lang, Z.Z. Shen, X.C. Hu, et al., Nano Energy 75 (2020) 104967
doi: 10.1016/j.nanoen.2020.104967
R. Fernandez-Leiro, S.H.W. Scheres, Nature 537 (2016) 339–346
doi: 10.1038/nature19948
Y. Li, Y. Li, Y. Cui, et al., Chem 4 (2018) 2250–2252
doi: 10.1016/j.chempr.2018.09.007
F.P. García de Arquer, C.T. Dinh, A. Ozrden, et al., Science 367 (2020) 661–666
doi: 10.1126/science.aay4217
M. Azhagurajan, T. Kajita, T. Itoh, et al., J. Am. Chem. Soc. 138 (2016) 3355–3361
doi: 10.1021/jacs.5b11849
T. Stephenson, Z. Li, B. Olsen, et al., Energy Environ. Sci. 7 (2014) 209–231
doi: 10.1039/C3EE42591F
Z. Zhu, Y. Tang, W.R. Leow, et al., Angew. Chem. Int. Ed. 58 (2019) 3521–3526
doi: 10.1002/anie.201813698
J. Wan, W. Bao, Y. Liu et al., Adv. Energy Mater. 5 (2015) 1401742
doi: 10.1002/aenm.201401742
Q. Su, S. Wang, M. Feng, et al., Sci. Rep. 7 (2017) 7275
doi: 10.1038/s41598-017-07648-0
Q. Wang, J. Li, J. Phys. Chem. C 111 (2007) 1675–1682
doi: 10.1021/jp066655p
Q. Li, H. Li, Q. Xia, et al., Nat. Mater. 20 (2021) 76–83
doi: 10.1038/s41563-020-0756-y
F. Zhou, S. Xin, H.W. Liang, et al., Angew. Chem. Int. Ed. 53 (2014) 11552–11556
doi: 10.1002/anie.201407103
J. Yu, J. Xiao, A. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 13071–13078
doi: 10.1002/anie.202004914
H. Ye, L. Ma, Y. Zhou, et al., PNAS 114 (2017) 13091–13096
doi: 10.1073/pnas.1711917114
J. Balach, T. Jaumann, L. Giebeler, Energy Storage Mater. 8 (2017) 209–216
doi: 10.1016/j.ensm.2017.03.013
G. Zhou, H. Tian, Y. Jin, et al., PNAS 114 (2017) 840–845
doi: 10.1073/pnas.1615837114
W. Tang, Z. Chen, B. Tian, et al., J. Am. Chem. Soc. 139 (2017) 10133–10141
doi: 10.1021/jacs.7b05371
Z. Wang, J.S. Chen, T. Zhu, et al., Chem. Comm. 46 (2010) 6906–6908
doi: 10.1039/c0cc01174f
S. Ji, S. Kim, W. Song, et al., Electrochim. Acta 354 (2020) 136636
doi: 10.1016/j.electacta.2020.136636
J. Kibsgaard, TF. Jaramillo, F. Besenbacher, et al., Nat. Chem. 6 (2014) 248–253
doi: 10.1038/nchem.1853
Y. Jiao, A. Mukhopadhyay, Y. Ma, et al., Adv. Energy Mater. 8 (2018) 1702779
doi: 10.1002/aenm.201702779
J. Xiao, X. Wang, X.Q. Yang, et al., Adv. Funct. Mater. 21 (2011) 2840–2846
doi: 10.1002/adfm.201002752
X. Fang, X. Guo, Y. Mao, et al., Chem. Asian J. 7 (2012) 1013–1017
doi: 10.1002/asia.201100796
Y. Wang, L. Yu, X.W. Lou, et al., Angew. Chem. Int. Ed. 55 (2016) 7423–7426
doi: 10.1002/anie.201601673
U.K. Sen, P. Johari, S. Basu, et al., Nanoscale 6 (2014) 10243–10254
doi: 10.1039/C4NR02480J
D.Y. Chung, S.K. Park, Y.H. Chung, et al., Nanoscale 6 (2014) 2131–2136
doi: 10.1039/C3NR05228A
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341 (2013) 1502–1505
doi: 10.1126/science.1241488
J. Feng, X. Sun, C. Wu, et al., J. Am. Chem. Soc. 133 (2011) 17832–17838
doi: 10.1021/ja207176c
X. Wang, G. Sun, N. Li, et al., Chem. Soc. Rev. 45 (2016) 2239–2262
doi: 10.1039/C5CS00811E
Z. Zeng, X. Zhang, K. Bustillo, et al., Nano Lett. 15 (2015) 5214–5220
doi: 10.1021/acs.nanolett.5b02483
W. Chen, J. Gu, Q. Liu et al., ACS Nano 12 (2018) 308–316
doi: 10.1021/acsnano.7b06364
M.A. Lukowski, A.S. Daniel, F. Meng, et al., J. Am. Chem. Soc. 135 (2013) 10274–10277
doi: 10.1021/ja404523s
H. Wang, Z. Lu, D. Kong, et al., ACS Nano 8 (2014) 4940–4947
doi: 10.1021/nn500959v
L. Li, S. Basu, Y. Wang, et al., Science 359 (2018) 1513
doi: 10.1126/science.aap8787
M.N. Obrovac, V.L. Chevrier, et al., Chem. Rev. 114 (2014) 11444–11502
doi: 10.1021/cr500207g
A. Varzi, L. Mattarozzi, S. Cattarin, et al., Adv. Energy Mater. 8 (2018) 1701706
doi: 10.1002/aenm.201701706
D. Larcher, J.M. TarasconNat. Chem. 7 (2015) 19–29
doi: 10.1038/nchem.2085
X. Liu, Y. Wang, Y. Yang, et al., Nano Energy 70 (2020) 104550
doi: 10.1016/j.nanoen.2020.104550
M. Wu, J. Zhan, K. Wu, et al., J. Mater. Chem. A 5 (2017) 14061–14069
doi: 10.1039/C7TA03497K
J. Bai, B. Zhao, J. Zhou, et al., Small 15 (2019) 1805420
doi: 10.1002/smll.201805420
X. Xu, W. Liu, Y. Kim, J. Cho, Nano Today 9 (2014) 604–630
doi: 10.1016/j.nantod.2014.09.005
N.H. Van, S. Lee, D.J. Kang, et al., J. Power Sources 280 (2015) 39–46
doi: 10.1016/j.jpowsour.2015.01.064
M. Chhowalla, H.S. Shin, G. Eda, et al., Nat. Chem. 5 (2013) 263–275
doi: 10.1038/nchem.1589
C. Zhu, Z. Zeng, H. Li, et al., J. Am. Chem. Soc. 135 (2013) 5998–6001
doi: 10.1021/ja4019572
J. Wu, N. You, X. Li, et al., J. Mater. Chem. A 7 (2019) 7644–7653
doi: 10.1039/c9ta00982e
K. Chang, W. Chen, L. Ma, et al., J. Mater. Chem. A 21 (2011) 6251–6257
doi: 10.1039/c1jm10174a
T. Wang, S. Chen, H. Pang, et al., Adv. Sci. 4 (2017) 1600289
doi: 10.1002/advs.201600289
L. Fan, S. Lei, H.M.K. Sari, et al., Nano Energy 78 (2020) 105235
doi: 10.1016/j.nanoen.2020.105235
H. Yoo, A.P. Tiwari, J.T. Lee, et al., Nanoscale 7 (2015) 3404–3409
doi: 10.1039/C4NR06348A
J.Z. Wang, L. Lu, M. Lotya, et al., Adv. Energy Mater. 3 (2013) 798–805
doi: 10.1002/aenm.201201000
X. Zhou, L.J. Wan, Y.G. Guo, Chem. Commun. 49 (2013) 1838–1840
doi: 10.1039/c3cc38780a
T. Cheng, J. Xu, Z. Tan, et al., Energy Storage Mater. 10 (2018) 282–290
doi: 10.1016/j.ensm.2017.07.001
K. Chang, W. Chen et al., Chem. Commun. 47 (2011) 4252–4254
doi: 10.1039/c1cc10631g
T. Cheng, J. Xu, Z. Tan, et al., Energy Stor. Mater. 10 (2017) 282–290
doi: 10.3390/sym9110282
Q. Li, X. Guo, M. Zheng, H Pang, Funct. Mater. Lett. 11 (2018) 1840004
doi: 10.1142/S1793604718400040
C. Zhang, H.B. Wu, Z. Guo, X.W. Lou, Electrochem. Commun. 20 (2012) 7–10
doi: 10.1016/j.elecom.2012.03.039
N. Liu, H. Wu, M.T. McDowell, et al., Nano Lett. 12 (2012) 3315–3321
doi: 10.1021/nl3014814
Z.W. Seh, W. Li, J.J. Cha, et al., Nat. Commun. 4 (2013) 1331
doi: 10.1038/ncomms2327
X. Zhang, R. Zhao, Q. Wu, et al., ACS Nano 11 (2017) 8429–8436
doi: 10.1021/acsnano.7b04078
F. Chen, L. Wu, Z. Zhou, et al., Chin. Chem. Lett. 20 (2019) 197–202
C. Cao, H. Dong, F. Liang, et al., Chem. Eng. J. 416 (2021) 129094
doi: 10.1016/j.cej.2021.129094
X.Y. Yu, H. Hu, Y.W. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 7395–7398
doi: 10.1002/anie.201502117
Y. Li, Y. Shan, H. Pang, et al., Chin. Chem. Lett. 31 (2020) 2280–2286
doi: 10.1016/j.cclet.2020.03.027
M.Y. Li, Y. Shi, C.C. Cheng, et al., Science 349 (2015) 524
doi: 10.1126/science.aab4097
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, et al., Nano Lett. 13 (2013) 5361–5366
doi: 10.1021/nl402875m
K. He, C. Poole, K.F. Mak, et al., Nano Lett. 13 (2013) 2931–2936
doi: 10.1021/nl4013166
L. Oakes, R. Carter, T. Hanken, et al., Nat. Commun. 7 (2016) 11796
doi: 10.1038/ncomms11796
M. Winter, Z Phys Chem. 223 (2009) 1395–1406
doi: 10.1524/zpch.2009.6086
M. Ge, C. Cao, G.M. Biesold, et al., Adv. Mater. 33 (2021) 2004577
doi: 10.1002/adma.202004577
X. Zhang, R. Kostecki, T.J. Richardson, et al., J. Electroanal. Soc. 148 (2001) A1341
doi: 10.1149/1.1415547
F.A. Soto, Y. Ma, J.M. Martinez de la Hoz, et al., Chem. Mater. 27 (2015) 7990–8000
doi: 10.1021/acs.chemmater.5b03358
P. Verma, P. Maire, P. Novák, et al., Electrochim. Acta 55 (2010) 6332–6341
doi: 10.1016/j.electacta.2010.05.072
K.X. Wang, X.H. Li, J.S. Chen, Adv. Mater. 27 (2015) 527–545
doi: 10.1002/adma.201402962
Y. Zhong, Y. Chen, Y. Cheng, et al., ACS Appl. Mater. Interfaces 11 (2019) 37726–37731
doi: 10.1021/acsami.9b12634
L.Y. Beaulieu, K.W. Eberman, R.L. Turner, et al., Electrochem. Solid St. 4 (2001) A137
doi: 10.1149/1.1388178
N. Liu, Z. Lu, J. Zhao, et al., Nat. Nanotechnol. 9 (2014) 187–192
doi: 10.1038/nnano.2014.6
C. Qian, J. Zhao, Y. Sun, et al., Nano Lett. 20 (2020) 7455–7462
doi: 10.1021/acs.nanolett.0c02880
H. Wu, G Yu, L. Pan, et al., Nat. Commun. 4 (2013) 1943
doi: 10.1038/ncomms2941
M. Ge, Y. Tang, O.I. Malyi, et al., Small 16 (2020) 2002094
doi: 10.1002/smll.202002094
N. Liu, L. Hu, M.T. McDowell, A. Jackson, Y. Cui, ACS Nano 5 (2011) 6487–6493
doi: 10.1021/nn2017167
K. Xu, Chem. Rev. 114 (2014) 11503–11618
doi: 10.1021/cr500003w
Z. Zhu, Y. Tang, Z. Lv, et al., Angew. Chem. Int. Ed. 57 (2018) 3656–3660
doi: 10.1002/anie.201712907
N.W. Li, Adv. Mater. 28 (2016) 1853–1858
doi: 10.1002/adma.201504526
Y. Liu, Y.X. Yin, C.P. Yang, et al., Adv. Mater. 29 (2017) 1605531
doi: 10.1002/adma.201605531
H.G. Liao, L. Cui, S. Whitelam, et al., Science 336 (2012) 1011–1014
doi: 10.1126/science.1219185
K.Y. Niu, J. Park, H. Zheng, et al., Nano Lett. 13 (2013) 5715–5719
doi: 10.1021/nl4035362
H.G. Liao, D. Zherebetskyy, H. Xin, et al., Science 345 (2014) 916–919
doi: 10.1126/science.1253149
P. Abellan, B.L. Mehdi, L.R. Parent, et al., Nano Lett. 14 (2014) 1293–1299
doi: 10.1021/nl404271k
R.R. Unocic, X.G. Sun, R.L. Sacci, et al., Microsc. Microanal. 20 (2014) 1029–1037
doi: 10.1017/S1431927614012744
J.M. Yuk, H.K. Seo, J.W. Choi, et al., ACS Nano 8 (2014) 7478–7485
doi: 10.1021/nn502779n
X. Zhang, X. Li, J. Liang, et al., Small 12 (2016) 2484–2491
doi: 10.1002/smll.201600043
L. Jin, H. Pang, Chin. Chem. Lett. 31 (2020) 2300–2304
doi: 10.1016/j.cclet.2020.03.041
M. Ge, C. Cao, J. Huang, et al., J. Mater. Chem. A 4 (2016) 6772
doi: 10.1039/C5TA09323F
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Zhong-Hui Sun , Yu-Qi Zhang , Zhen-Yi Gu , Dong-Yang Qu , Hong-Yu Guan , Xing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590
Hui Gu , Mingyue Gao , Kuan Shen , Tianli Zhang , Junhao Zhang , Xiangjun Zheng , Xingmei Guo , Yuanjun Liu , Fu Cao , Hongxing Gu , Qinghong Kong , Shenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Peng Zhou , Ziang Jiang , Yang Li , Peng Xiao , Feixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467
Guihuang Fang , Wei Chen , Hongwei Yang , Haisheng Fang , Chuang Yu , Maoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337