Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries
* Corresponding author.
E-mail address: gq-zou@csu.edu.cn (G. Zou).
Citation:
Nkongolo Tshamala Aristote, Kangyu Zou, Andi Di, Wentao Deng, Baowei Wang, Xinglan Deng, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries[J]. Chinese Chemical Letters,
;2022, 33(2): 730-742.
doi:
10.1016/j.cclet.2021.08.049
K. Feng, M. Li, W. Liu, et al., Nano Micro Small 14(2018) 1702737.
Y. Lu, L. Yu, X.W. Luo, Chem. 4(2018) 972-996.
doi: 10.1016/j.chempr.2018.01.003
W. Wang, B. Schwenzer, J. Xiao, et al., Nano Lett. 12(2012) 3783-3787.
doi: 10.1021/nl3016957
Z. Li, C. Bommier, Z.S. Chong, et al., Adv. Energy Mater. 7(2017) 1602894.
doi: 10.1002/aenm.201602894
W. Zhang, F. Zhang, F. Ming, H.N. Alshareef, Energy Chem. 1(2019) 100012.
doi: 10.1016/j.enchem.2019.100012
X. Pu, H. Wang, T. Yuan, et al., Energy Storage Mater. 22(2019) 330-336.
doi: 10.1016/j.ensm.2019.02.017
L. Wu, D. Bresser, D. Buchholz, S. Passerini, J. Electrochem. Soc. 162(2015) A3052-A3058.
doi: 10.1149/2.0091502jes
Y. Pan, X. Cheng, M. Gao, et al., ACS Appl. Mater. Interfaces 12(2020) 33621-33630.
doi: 10.1021/acsami.0c06296
M. Wahid, D. Puthusseri, Y. Gawli, N. Sharma, S. Ogale, ChemSusChem 11(2018) 506-526.
doi: 10.1002/cssc.201701664
Z. Li, Z. Jian, X. Wang, et al., Chem. Commun. 53(2017) 2610-2613.
doi: 10.1039/C7CC00301C
Y. Bai, Z. Wang, C. Wu, et al., ACS Appl. Mater. Interfaces 7(2015) 5598-5604.
doi: 10.1021/acsami.5b00861
F. Xie, Z. Xu, Z. Guo, M.M. Titirici, Progr. Energy 2(2020) 042002.
doi: 10.1088/2516-1083/aba5f5
J. Chen, Z. Xiao, J. Meng, et al., Sci. China Mater. 63(2020) 1163-1170.
doi: 10.1007/s40843-020-1274-0
Y.S. Xu, J.C. Gao, X.S. Tao, et al., ACS Appl. Mater. Interfaces 12(2020) 15313-15319.
doi: 10.1021/acsami.0c02157
Y. Zhang, L. Tao, C. Xie, et al., Adv. Mater. 32(2020) 1905923.
doi: 10.1002/adma.201905923
H. Su, S. Jaffer, H. Yu, Energy Storage Mater. 5(2016) 116-131.
doi: 10.1016/j.ensm.2016.06.005
P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Adv. Energy Mater. 8(2017) 1701912.
T. Jin, Y. Liu, Y. Li, et al., Adv. Energy Mater. 7(2017) 1700087.
doi: 10.1002/aenm.201700087
N. Zhang, X. Xiao, H. Pang, Nanoscale Horiz. 4(2019) 99-116.
doi: 10.1039/C8NH00144H
C. Masquelier, L. Croguennec, Chem. Rev. 113(2013) 6552-6591.
doi: 10.1021/cr3001862
Z. Liu, A. Daali, G.L. Xu, et al., Nano Lett. 20(2020) 3844-3851.
doi: 10.1021/acs.nanolett.0c00964
W. Wang, S. Wang, H. Jiao, P. Zhan, S. Jiao, Phys. Chem. Chem. Phys. 17(2015) 4551-4557.
doi: 10.1039/C4CP05764C
Y. Pan, Y. Zhang, B.S. Parimalam, et al., J. Electroanal. Chem. 799(2017) 181-186.
doi: 10.1016/j.jelechem.2017.06.002
S.H. Kang, W.S. Yoon, K.W. Nam, X.Q. Yang, D.P. Abraham, Mater. Sci. 42(2008) 4701-4706.
J. Song, K. Wang, J. Zheng, et al., ACS Energy Lett. 5(2020) 1718-1725.
doi: 10.1021/acsenergylett.0c00700
Z.L. Xu, K. Lim, K.Y. Park, et al., Adv. Funct. Mater. 28(2018) 1802099.
doi: 10.1002/adfm.201802099
J. Fondard, E. Irisarri, C. Courreges, et al., Electrochem. Soc. 167(2020) 070526.
doi: 10.1149/1945-7111/ab75fd
R. Mogensen, D. Brandell, R. Younesi, ACS Energy Lett. 1(2016) 1173-1178.
doi: 10.1021/acsenergylett.6b00491
X. Li, X. Sun, X. Hu, et al., Nano Energy 77(2020) 105143.
doi: 10.1016/j.nanoen.2020.105143
B. Jache, P. Adelhelm, J. German Chem. Soc. 53(2014) 10169-10173.
S. Komaba, W. Murata, T. Ishikawa, et al., Adv. Funct. Mater. 21(2011) 3859-3867.
doi: 10.1002/adfm.201100854
I.E. Moctar, Q. Ni, Y. Bai, F. Wu, C. Wu, Funct. Mater. Lett. 11(2018) 1830003.
doi: 10.1142/S1793604718300037
M. Chen, Q. Liu, S.W. Wang, et al., Adv. Energy Mater. 9(2019) 1803609.
doi: 10.1002/aenm.201803609
C. Ding, T. Nohira, R. Hagiwara, Phys. Chem. Chem. Phys. 18(2016) 30770-30776.
doi: 10.1039/C6CP05944A
B. Zhang, C.M. Ghimbeu, C. Laberty, C.V. Guterl, J.M. Tarascon, Adv. Energy Mater. 6(2016) 1501588.
doi: 10.1002/aenm.201501588
T. Chen, L. Pan, T. Lu, et al., J. Mater. Chem. A 2(2014) 1263-1267.
doi: 10.1039/C3TA14037G
Y. Li, S. Xu, X. Wu, et al., J. Mater. Chem. A 3(2015) 71-77.
doi: 10.1039/C4TA05451B
M. Zhang, Y. Li, F. Wu, Y. Bai, C. Wu, Nano Energy 82(2021) 105738.
doi: 10.1016/j.nanoen.2020.105738
Y Liu, B.V. Merinov, W.A. Goddard, PNAS 113(2016) 3735-3739.
doi: 10.1073/pnas.1602473113
C.M. Ghimbeu, J. Gorka, V. Simone, et al., Nano Energy 44(2018) 327-335.
doi: 10.1016/j.nanoen.2017.12.013
L. Xiao, H. Lu, Y. Fang, et al., Adv. Energy Mater. 8(2018) 1703238.
doi: 10.1002/aenm.201703238
D. Datta, J. Li, V.B. Shenoy, ACS Appl. Mater. Interfaces 6(2014) 1788-1795.
doi: 10.1021/am404788e
Y. Zhu, M. Chen, Q. Li, C. Yuan, C. Wang, Carbon 129(2018) 695-701.
doi: 10.1016/j.carbon.2017.12.103
Q. Lin, J. Zhang, D. Kong, et al., Adv. Energy Mater. 9(2019) 1803078.
doi: 10.1002/aenm.201803078
P. Wang, X. Zhu, Q. Wang, et al., J. Mater. Chem. A 5(2017) 5761-5769.
doi: 10.1039/C7TA00639J
D. Sun, B. Luo, H. Wang, et al., Nano Energy 64(2019) 103937.
doi: 10.1016/j.nanoen.2019.103937
C. Bommier, W. Luo, W.Y. Gao, et al., Carbon 76(2014) 165-174.
doi: 10.1016/j.carbon.2014.04.064
K.L. Hong, L. Qie, R. Zeng, J. Mater. Chem. A 2(2014) 12733-12738.
doi: 10.1039/C4TA02068E
W. Luo, C. Bommier, Z. Jian, et al., ACS Appl. Mater. Interfaces 7(2015) 2626-2631.
doi: 10.1021/am507679x
N. Zhang, C. Gao, Y. Xiong, J. Energy Chem. 37(2019) 43-57.
doi: 10.1016/j.jechem.2018.09.010
J. Liu, P. Kopold, C. Wu, et al., Energy Environ. Sci. 8(2015) 3531-3538.
doi: 10.1039/C5EE02074C
F. Xie, Z. Xu, A.C.S. Jensen, et al., Adv. Funct. Mater. 29(2019) 1901072.
doi: 10.1002/adfm.201901072
X. Sun, C. Wang, Y. Gong, et al., Nano Micro Small 14(2018) 1802218.
W. Chen, M. Wan, Q. Liu, et al., Small Method. 3(2019) 1800323.
doi: 10.1002/smtd.201800323
C. Chen, Y. Lu, Y. Ge, et al., Energy Tech. 4(2016) 1440-1449.
doi: 10.1002/ente.201600205
Z. He, M. Li, Y. Li, et al., Appl. Surface Sci. 469(2019) 423-430.
doi: 10.1016/j.apsusc.2018.10.220
J. Zhu, C. Chen, Y. Lu, et al., Carbon 94(2015) 189-195.
doi: 10.1016/j.carbon.2015.06.076
R. Li, J. Huang, J. Li, et al., ChemElectroChem 7(2020) 604-613.
doi: 10.1002/celc.201901770
H. Lim, S. Yu, W. Choi, S.O. Kim, ACS Nano 15(2021) 7409-7420.
doi: 10.1021/acsnano.1c00797
M. Guo, J. Huang, X. Kong, et al., Carbon Mater. 31(2016) 352-362.
doi: 10.1016/S1872-5805(16)60019-7
Y. Li, Y. Yuan, Y. Bai, et al., Adv. Energy Mater. 8(2018) 1702781.
doi: 10.1002/aenm.201702781
Z. Li, L. Ma, T.W. Surta, et al., ACS Energy Lett. 1(2016) 395-401.
doi: 10.1021/acsenergylett.6b00172
L. Qie, W. Chen, X. Xiong, et al., Adv. Sci. 2(2015) 1500195.
X. Wang, G. Li, F.M. Hassan, et al., Nano Energy 15(2015) 746-754.
doi: 10.1016/j.nanoen.2015.05.038
B. Quan, A. Jin, S.H. Yu, et al., Adv. Sci. 5(2018) 1700880.
doi: 10.1002/advs.201700880
G. Zhao, D. Yu, H. Zhang, et al., Nano Energy. 67(2020) 104219.
doi: 10.1016/j.nanoen.2019.104219
P. Feng, W. Wang, K. Wang, S. Cheng, K. Jiang, J. Alloys Compd. 795(2019) 223-232.
doi: 10.1016/j.jallcom.2019.04.338
J. Li, X. Li, D. Xiong, et al., RSC Adv. 7(2017) 55060-55066.
doi: 10.1039/C7RA09349G
R.H. Arendt, W.D. Pasco, J. Electrochem. Soc. 134(1987) 733.
doi: 10.1149/1.2100542
H. Li, K. Wang, W. Li, S. Cheng, K. Jiang, J. Mater. Chem. A 3(2015) 16495-46500.
doi: 10.1039/C5TA03250D
L. Liu, J. Sun, Z. Du, et al., Chem. Commun. 56(2020) 11422-11425.
doi: 10.1039/D0CC04112B
J.Y. Hwang, S.T. Myung, Y.K. Sun, Phys. Chem. C 122(2018) 13500-13507.
doi: 10.1021/acs.jpcc.7b12140
Q. Liu, Z. Hu, M. Chen, et al., Nano Micro Small 15(2019) 1805381.
F. Sauvage, L. Laffont, J.M. Tarascon, E. Baudrin, Inorg. Chem. 46(2007) 3289-3294.
doi: 10.1021/ic0700250
Z. Dai, U. Mani, H.T. Tan, Q. Yan, Small Method. 1(2017) 1700098.
doi: 10.1002/smtd.201700098
Y. Lu, S. Zhang, Y. Li, et al., J. Power Sources 247(2014) 770-777.
doi: 10.1016/j.jpowsour.2013.09.018
X. Zhong, Z. Yang, Y. Jiang, et al., ACS Appl. Mater. Interfaces 8(2016) 32360-32365.
doi: 10.1021/acsami.6b11873
H. Li, X. Bi, Y. Bai, et al., Adv. Mater. Inter. 3(2016) 1500740.
doi: 10.1002/admi.201500740
S. Sakka, Y. Tanaka, T. Kokubo, J. No. Cryst. Solids. 82(1986) 24-30.
doi: 10.1016/0022-3093(86)90106-7
Q. Liu, D. Wang, X. Yang, et al., J. Mater. Chem. A 3(2015) 21478-21485.
doi: 10.1039/C5TA05939A
X.H. Ma, L.L. Li, L. Cheng, et al., J. Alloys Compd. 815(2020) 152402.
doi: 10.1016/j.jallcom.2019.152402
H. Hou, B. Gan, Y. Gong, N. Chen, C. Sun, Inorg. Chem. 55(2016) 9033-9037.
doi: 10.1021/acs.inorgchem.6b01515
G. Singh, B. Acebedo, M.C. Cabanas, et al., Electrochem. Commun. 37(2013) 61-63.
doi: 10.1016/j.elecom.2013.10.008
M. Liu, X. Wang, S. Wei, et al., Electrochem. Acta 269(2018) 479-789.
doi: 10.1016/j.electacta.2018.02.159
X. Deng, W. Shi, J. Sunarso, M. Liu, Z. Shao, ACS Appl. Mater. Interfaces 9(2017) 16280-16287.
doi: 10.1021/acsami.7b03933
A. Purwanto, C.S. Yudha, U. Ubaidillah, et al., Mater. Res. Express 5(2018) 122001.
doi: 10.1088/2053-1591/aae167
Z. Zhang, Y. Meng, Y. Wang, H. Yuan, D. Xiao, ChemElectroChem 5(2018) 3229-3235.
doi: 10.1002/celc.201800883
D. Zuo, C. Wang, J. Wu, et al., Solid State Ionics 336(2019) 120-128.
doi: 10.1016/j.ssi.2019.03.014
J. Wang, C. Mi, P. Nie, et al., J. Electroanal. Chem. 818(2018) 10-18.
doi: 10.1016/j.jelechem.2018.04.011
P. Feng, W. Wang, J. Hou, et al., Chem. Eng. J. 353(2018) 25-33.
doi: 10.1016/j.cej.2018.07.114
N. Daher, D. Huo, C. Davoisne, P. Meunier, R. Janot, ACS Appl. Energy Mater. 3(2020) 6501-6510.
doi: 10.1021/acsaem.0c00727
M. Dahbi, T. Nakano, N. Yabuuchi, et al., ChemElectroChem 3(2016) 1856-1867.
doi: 10.1002/celc.201600365
H. Song, A. Tang, G. Xu, et al., Int. J. Electrochem. Sci. 13(2018) 4720-4730.
J. Zhang, K. Zhang, J. Yang, et al., Chem. Mater. 32(2020) 448-458.
doi: 10.1021/acs.chemmater.9b04043
D. Lu, Z. Yao, Y. Zhong, et al., ACS Appl. Mater. Interfaces 11(2019) 15630-15637.
doi: 10.1021/acsami.9b02555
X. Dou, I. Hasa, D. Saurel, et al., ChemSusChem 11(2018) 3276-3285.
doi: 10.1002/cssc.201801148
B.H. Hou, Y.Y. Wang, D.S. Liu, et al., Adv. Funct. Mater. 28(2018) 1805444.
doi: 10.1002/adfm.201805444
J. Zhang, D.W. Wang, W. Lv, et al., Energy Environ. Sci. 10(2017) 370-376.
doi: 10.1039/C6EE03367A
J. Zhang, W. Wang, B. Li, Chem. Eng. J. 392(2020) 123810.
doi: 10.1016/j.cej.2019.123810
X. Li, X. Hu, L. Zhou, et al., J. Mater. Chem. A 7(2019) 11976-11984.
doi: 10.1039/C9TA01615E
H. Wan, X. Hu, Int. J. Hydorgen Energy 44(2019) 22250-22262.
doi: 10.1016/j.ijhydene.2019.06.107
T. Zhang, J. Mao, X. Liu, et al., RSC Adv. 7(2017) 41504-41511.
doi: 10.1039/C7RA07231G
K.H. Nam, Y. Hwa, C.M. Park, ACS Appl. Mater. Interfaces 12(2020) 15053-10562.
doi: 10.1021/acsami.9b21803
L. Fu, K. Tang, K. Song, P.A.V. Aken, Y. Yu, J. Mater, Nanoscale 6(2014) 1384-1389.
doi: 10.1039/C3NR05374A
F. Xie, Z. Xu, A.C.S. Jensen, et al., J. Mater. Chem. A 7(2019) 27567-27575.
doi: 10.1039/C9TA11369J
H. He, Q. Gan, H. Wang, et al., Nano Energy 44(2018) 217-227.
doi: 10.1016/j.nanoen.2017.11.077
M. Liu, J. Zhang, S. Guo, et al., ACS Appl. Matter. Interfaces 12(2020) 17620-17627.
doi: 10.1021/acsami.0c02230
Y. Wang, D. Kong, W. Shi, et al., Adv. Energy Mater. 6(2016) 1601057.
doi: 10.1002/aenm.201601057
X. Ou, C. Yang, X. Xiong, et al., Adv. Funct. Mater. 27(2017) 1606242.
doi: 10.1002/adfm.201606242
R. Ma, L. Fan, S. Chen, et al., ACS Appl. Mater. Interfaces 10(2018) 15751-15759.
doi: 10.1021/acsami.8b03648
K. Wang, Y. Jin, S. Sun, et al., ACS Omega 2(2017) 1687-1695.
doi: 10.1021/acsomega.7b00259
A. Sarkar, C.V. Manohar, S. Mitra, Nano Energy 70(2020) 104520.
doi: 10.1016/j.nanoen.2020.104520
D. Yang, S. Li, D. Cheng, et al., Energy Fuel. 35(2021) 2795-2804.
doi: 10.1021/acs.energyfuels.0c04258
S. Alvina, C. Chandra, J. Kim, Chem. Eng. J. 391(2020) 123576.
doi: 10.1016/j.cej.2019.123576
P.M.L. Le, T.D. Vo, H. Pan, et al., Adv. Funct. Mater. 30(2020) 2001151.
doi: 10.1002/adfm.202001151
L. Fan, X. Li, X. Song, et al., ACS Appl. Mater. Interfaces 10(2018) 2637-2648.
doi: 10.1021/acsami.7b18195
J.S. Park, G.D. Park, Y.C. Kang, J. Mater. Sci. Technol. 89(2021) 24-35.
doi: 10.1016/j.jmst.2021.01.076
Q. Pan, H. Chen, Z. Wu, et al., Chem. Eur. J. 25(2019) 971-975.
Q. He, K. Rui, C. Chen, J. Yang, Z. Wen, ACS Appl. Mater. Inter. 9(2017) 36927-36935.
doi: 10.1021/acsami.7b12503
C. Ma, L. Qiu, J. Bao, Y. Zhou, Chem. Res. Chin. Univ. 37(2021) 318-322.
doi: 10.1007/s40242-021-1030-9
S. Wang, Y. Zhu, M. Jiang, et al., Inter. J. Hydrogen Energy 45(2020) 19611-19619.
doi: 10.1016/j.ijhydene.2020.05.133
X. Dou, I. Hasa, M. Hekmatfar, et al., ChemSusChem 10(2017) 2668-2676.
doi: 10.1002/cssc.201700628
T. Wang, K. Yang, J. Shi, et al., J. Energy Chem. 46(2020) 71-77.
doi: 10.1016/j.jechem.2019.10.021
M. Chen, B. Li, X. Liu, et al., J. Mater. Chem. 6(2018) 3022-3027.
doi: 10.1039/C7TA10153H
L. Yan, H. Zhang, Z. Li, et al., ACS Appl. Energy Mater. 3(2020) 10255-10260.
doi: 10.1021/acsaem.0c02091
P. Wang, L. Fan, L. Yan, Z. Shi, J. Alloys Compd. 775(2019) 1028-1035.
doi: 10.1016/j.jallcom.2018.10.180
X. Liu, Y. Xiang, Q. Li, et al., Electrochem. Acta 387(2021) 138525.
doi: 10.1016/j.electacta.2021.138525
W.H. Guan, Q.Y. Lin, Z.Y. Lan, et al., Mater. Today Nano 12(2020) 100098.
doi: 10.1016/j.mtnano.2020.100098
H. Han, H. Lu, X. Jiang, et al., Electrochem. Acta 301(2019) 352-358.
doi: 10.1016/j.electacta.2019.02.002
S. Mirza, Z. Song, H. Zhang, et al., J. Mater. Chem. A 8(2020) 23368.
doi: 10.1039/D0TA08186H
Y.J. Park, J.U. Choi, J.H. Jo, et al., Adv. Funct. Mater. 29(2019) 1901912.
doi: 10.1002/adfm.201901912
K. Tang, Y. Wang, X. Zhang, et al., Electrochem. Acta 312(2019) 45-53.
doi: 10.1016/j.electacta.2019.04.183
L. Fang, Z. Lan, W. Guan, et al., Energy Storage Mater. 18(2019) 107-113.
doi: 10.1016/j.ensm.2018.10.002
Y.B. Niu, Y.J. Guo, Y.X. Yin, et al., Adv. Mater. 32(2020) 2001419.
doi: 10.1002/adma.202001419
X. Zhu, T. Mochiku, H. Fuji, et al., Nano Res. 11(2018) 6197-6205.
doi: 10.1007/s12274-018-2139-0
Y. Liu, Y. Qiao, W. Zhang, et al., Nano Energy 5(2014) 97-104.
doi: 10.1016/j.nanoen.2014.02.010
L. Bi, Z. Miao, X. Li, et al., Electrochem. Acta 337(2020) 135816.
doi: 10.1016/j.electacta.2020.135816
L. Zhang, J. Liu, C. Wei, et al., ACS Appl. Mater. Interfaces 12(2020) 3670-3680.
doi: 10.1021/acsami.9b20490
L. Fang, C. Wang, L. Huangfu, et al., Adv. Funct. Mater. 29(2019) 1906680.
doi: 10.1002/adfm.201906680
X. Wu, Y. Luo, M. Sun, et al., Nano Energy 13(2015) 117-123.
doi: 10.1016/j.nanoen.2015.02.006
F. Zan, Y. Yao, S.V. Savilov, E. Suslova, H. Xia, Funct. Mater. Lett. 13(2020) 205016.
H. Wang, M. Gu, J. Jiang, C. Lai, X. Ai, J. Power Sources 327(2016) 653- 657.
doi: 10.1016/j.jpowsour.2016.07.109
Q. Liu, Z. Hu, M. Chen, et al., ACS Appl. Mater. Interfaces 9(2017) 3644- 3652.
doi: 10.1021/acsami.6b13830
S. Jiao, J. Tuo, H. Xie, et al., Mater. Res. Bull. 86(2017) 194-200.
doi: 10.1016/j.materresbull.2016.10.019
N. Sabi, S. Doubaji, K. Hashimoto, et al., J. Power Sources 342(2017) 998-1005.
doi: 10.1016/j.jpowsour.2017.01.025
K. Wang, Z.G. Wu, T. Zhang, et al., Electrochem. Acta 216(2016) 51-57.
doi: 10.1016/j.electacta.2016.09.003
D. Zhou, W. Huang, F. Zhao, Solid State Ionics 322(2018) 18-23.
doi: 10.1016/j.ssi.2018.04.019
Q. Wang, K. Jiang, Y. Feng, et al., ACS Appl. Mater. Interfaces 12(2020) 39056-39062.
doi: 10.1021/acsami.0c09082
Y. Niu, M. Xu, B. Shen, C. Dai, C.M. Li, J. Mater. Chem A 4(2016) 16531-16535.
doi: 10.1039/C6TA05780B
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Guangchang Yang , Shenglong Yang , Jinlian Yu , Yishun Xie , Chunlei Tan , Feiyan Lai , Qianqian Jin , Hongqiang Wang , Xiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589