Microfluidic methods for cell separation and subsequent analysis
-
* Corresponding author.
E-mail address: wujing@cugb.edu.cn (J. Wu).
Citation:
Tianyou Chen, Chunxia Huang, Yanran Wang, Jing Wu. Microfluidic methods for cell separation and subsequent analysis[J]. Chinese Chemical Letters,
;2022, 33(3): 1180-1192.
doi:
10.1016/j.cclet.2021.07.067
Q. Huang, S. Mao, M. Khan, J. -M. Lin, Analyst 144(2019) 808-823.
doi: 10.1039/C8AN01079J
R. Zenobi, Analytical and Biological Perspectives 342(2013) 1243259.
F.C. Tang, K.Q. Lao, M.A. Surani, Nat. Methods 8(2011) S6-S11.
doi: 10.1038/nmeth.1557
D.A. Lawson, N.R. Bhakta, K. Kessenbrock, et al., Nature 526(2015) 131-135.
doi: 10.1038/nature15260
F.C. Tang, C. Barbacioru, Y.Z. Wang, et al., Nat. Methods 6(2009) 377-382.
doi: 10.1038/nmeth.1315
Y. Kieffer, H.R. Hocine, G. Gentric, et al., Cancer Discov 10(2020) 1330-1351.
doi: 10.1158/2159-8290.CD-19-1384
A.C. Habermann, A.J. Gutierrez, L.T. Bui, et al., Sci. Adv. 6(2020) 15.
H. Mathys, J. Davila-Velderrain, Z. Peng, et al., Nature 570(2019) 332-337.
doi: 10.1038/s41586-019-1195-2
T. Stuart, A. Butler, P. Hoffman, et al., Cell 177(2019) 1888-1902.
doi: 10.1016/j.cell.2019.05.031
T. Masuda, R. Sankowski, O. Staszewski, et al., Nature 566(2019) 388-392.
doi: 10.1038/s41586-019-0924-x
S. Lindstrom, H. Andersson-Svahn, Lab Chip 10(2010) 3363-3372.
doi: 10.1039/c0lc00150c
Q. Zhang, S. Feng, L. Lin, S. Mao, J. -M. Lin, Chem. Soc. Rev. 50(2021) 5333-5348.
doi: 10.1039/D0CS01516D
Y. Zheng, Z. Wu, M. Khan, et al., Anal. Chem. 91(2019) 12283-12289.
doi: 10.1021/acs.analchem.9b02434
Y. Zheng, Z. Wu, J. -M. Lin, L. Lin, Chin. Chem. Lett. 31(2020) 451-454.
doi: 10.1016/j.cclet.2019.07.036
S. Feng, S. Mao, Q. Zhang, et al., ACS Sensors 4(2019) 521-527.
doi: 10.1021/acssensors.8b01696
W. Li, M. Khan, S. Mao, et al., J. Pharm. Anal. 8(2018) 210-218.
doi: 10.1016/j.jpha.2018.07.005
S. Mao, Q. Zhang, H. Li, et al., Chem. Sci. 9(2018) 7694-7699.
doi: 10.1039/C8SC03027H
S. Mao, Q. Zhang, H. Li, et al., Anal. Chem. 90(2018) 9637-9643.
doi: 10.1021/acs.analchem.8b02653
S. Mao, W. Zhang, Q. Huang, et al., Angew. Chem. Int. Edit. 57(2018) 236-240.
doi: 10.1002/anie.201710273
J. Dou, S. Mao, H. Li, J-M. Lin, Anal. Chem. 92(2020) 892-898.
doi: 10.1021/acs.analchem.9b03681
T. Xie, N. Li, S. Mao, et al., Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration 5(2020) 3857-3862 ACS Omega.
C. Alix-Panabieres, K. Pantel, Clin. Chem. 59(2013) 110-118.
doi: 10.1373/clinchem.2012.194258
H. Jeon, B. Jundi, K. Choi, et al., Lab Chip 20(2020) 3612-3624.
doi: 10.1039/D0LC00675K
Y. Huang, Y. Sheng, S. Chao, et al., Lab Chip 20(2020) 4342-4348.
doi: 10.1039/D0LC00895H
J. Zhou, I. Papautsky, Lab Chip 19(2019) 3416-3426.
doi: 10.1039/C9LC00786E
V.J. Lyons, A. Helms, D. Pappas, Anal. Chim. Acta 1076(2019) 154-161.
doi: 10.1016/j.aca.2019.05.040
K.C. Andree, A. Mentink, A.T. Nguyen, et al., Lab Chip 19(2019) 1006-1012.
doi: 10.1039/C8LC01158C
S.L. Stott, C.H. Hsu, D.I. Tsukrov, et al., Proc. Natl. Acad. Sci. U. S. A. 107(2010) 18392-18397.
S. Nagrath, L.V. Sequist, S. Maheswaran, et al., Nature 450(2007) 1235-1239.
doi: 10.1038/nature06385
H. Pei, L. Li, Z. Han, et al., Lab Chip 20(2020) 3854-3875.
doi: 10.1039/D0LC00577K
S.M. Santana, H. Liu, H. N, et al., Biomed. Microdevices 14(2012) 401-407.
doi: 10.1007/s10544-011-9616-5
D. -Y. Oh, Y. -J. Bang, Nat. Rev. Clin. Oncol. 17(2020) 33-48.
doi: 10.1038/s41571-019-0268-3
C. Spiess, Q. Zhai, P.J. Carter, Mol. Immunol. 67(2015) 95-106.
doi: 10.1016/j.molimm.2015.01.003
Y. Song, Z. Zhu, Y. An, et al., Anal. Chem. 85(2013) 4141-4149.
doi: 10.1021/ac400366b
M. Mashreghi, P. Zamani, S.A. Moosavian, M.R. Jaafari, Nanoscale Res. Lett. 15(2020) 101.
doi: 10.1186/s11671-020-03334-9
Y. -T. Kang, Y.J. Kim, J. Bu, et al., Sens. Actuators B-Chem. 260(2018) 320-330.
doi: 10.1016/j.snb.2017.12.157
T. Wang, C.Y. Chen, L. M, et al., Biotechnol. Adv. 37(2019) 28-50.
doi: 10.1016/j.biotechadv.2018.11.001
P. Rothlisberger, M. Hollenstein, Adv. Drug Deliv. Rev. 134(2018) 3-21.
doi: 10.1016/j.addr.2018.04.007
M.R. Dunn, R.M. Jimenez, J.C. Chaput, Nat. Rev. Chem. 1(2017) 16.
doi: 10.1038/s41570-017-0016
Q. Chen, J. Wu, Y. Zhang, Z. Lin, J. -M. Lin, Lab Chip 12(2012) 5180-5185.
doi: 10.1039/c2lc40858a
M. Lin, J. -F. Chen, Y. -T. Lu, et al., Accounts Chem. Res. 47(2014) 2941-2950.
doi: 10.1021/ar5001617
L. Zhao, C. Tang, L. Xu, et al., Small 12(2016) 1072-1081.
doi: 10.1002/smll.201503188
C.S. Lin, Y.C. Tsai, K.F. Hsu, G.B. Lee, Lab Chip 21(2021) 725-734.
doi: 10.1039/D0LC01333A
M. Hejazian, W. Li, N. Nam-Trung, Lab Chip 15(2015) 959-970.
doi: 10.1039/C4LC01422G
W. Shi, S. Wang, A. Maarouf, et al., Lab Chip 17(2017) 3291-3299.
doi: 10.1039/C7LC00333A
F. Zhang, L.L. Wu, W.D. Nie, et al., Anal. Chem. 91(2019) 15726-15731.
doi: 10.1021/acs.analchem.9b03920
W. Zhao, R. Cheng, B.D. Jenkins, et al., Lab Chip 17(2017) 3097-3111.
doi: 10.1039/C7LC00680B
K. Xiong, W. Wei, Y.J. Jin, et al., Adv. Mater. 28(2016) 7929-7935.
doi: 10.1002/adma.201601643
P. Liu, P. Jonkheijm, L. Terstappen, M. Stevens, Cancers 12(2020) 26.
L.A. Luo, Y.Q. He, Cancer Med 9(2020) 4207-4231.
doi: 10.1002/cam4.3077
Y. Sui, C.J. Teo, P.S. Lee, Y.T. Chew, C. Shu, Int. J. Heat Mass Transf. 53(2010) 2760-2772.
doi: 10.1016/j.ijheatmasstransfer.2010.02.022
M.E. Warkiani, G. Guan, K.B. Luan, et al., Lab Chip 14(2014) 128-137.
doi: 10.1039/C3LC50617G
A. Shiriny, M. Bayareh, Chem. Eng. Sci. 229(2021) 116102.
doi: 10.1016/j.ces.2020.116102
H. Tavassoli, P. Rorimpandey, Y.C. Kang, et al., Small 17(2021) 2006176.
doi: 10.1002/smll.202006176
Q. Zhao, D. Yuan, J. Zhang, W. Li, Micromachines 11(2020) 461.
doi: 10.3390/mi11050461
P. -H. Tsou, P. -H. Chiang, Z. -T. Lin, et al., Lab Chip 20(2020) 4007-4015.
doi: 10.1039/D0LC00663G
E. Guzniczak, O. Otto, G. Whyte, et al., Lab Chip 20(2020) 614-625.
doi: 10.1039/C9LC01000A
R.K. Gao, L. Cheng, S.Y. Wang, et al., Talanta 207(2020) 8.
S. Karimi, P. Mehrdel, J. Farre-Llados, J. Casals-Terre, Lab Chip 19(2019) 3249-3260.
doi: 10.1039/C9LC00690G
P. Dettinger, W. Wang, N. Ahmed, et al., Lab Chip 20(2020) 4246-4254.
doi: 10.1039/D0LC00687Dyz%$https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201101034.htm
H. Pei, L. Li, Y. Wang, et al., Anal. Chem. 91(2019) 11078-11084.
doi: 10.1021/acs.analchem.9b01647
Z. Wu, H. Jiang, L. Zhang, et al., Lab Chip 19(2019) 3922-3930.
doi: 10.1039/C9LC00874H
C. Richard, A. Fakhfouri, M. Colditz, et al., Lab Chip 19(2019) 4043-4051.
doi: 10.1039/C9LC00804G
C. Devendran, K. Choi, J. Han, et al., Lab Chip 20(2020) 2674-2688.
doi: 10.1039/D0LC00397B
N. Zhang, J.P. Zuniga-Hertz, E.Y. Zhang, et al., Lab Chip 21(2021) 904-915.
doi: 10.1039/D0LC01012J
E. Brouzes, M. Medkova, N. Savenelli, et al., Proc. Natl. Acad. Sci. U. S. A. 106(2009) 14195-14200.
doi: 10.1073/pnas.0903542106
S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8(2008) 198-220.
doi: 10.1039/b715524g
A.B. Theberge, F. Courtois, Y. Schaerli, et al., Angew. Chem. Int. Edit. 49(2010) 5846-5868.
doi: 10.1002/anie.200906653
F. Del Ben, M. Turetta, G. Celetti, et al., Angew. Chem. Int. Edit. 55(2016) 8581- 8584.
doi: 10.1002/anie.201602328
G. Leonaviciene, K. Leonavicius, R. Meskys, L. Mazutis, Lab Chip 20(2020) 4052- 4062.
doi: 10.1039/D0LC00660B
M. Wang, M.H. Nai, R.Y. -J. Huang, et al., Lab Chip 21(2021) 764-774.
doi: 10.1039/D0LC01294G
R. Zilionis, J. Nainys, A. Veres, et al., Nat. Protoc. 12(2017) 44-73.
doi: 10.1038/nprot.2016.154
C.G. Yang, R.Y. Pan, Z.R. Xu, Chin. Chem. Lett. 26(2015) 1450-1454.
doi: 10.1016/j.cclet.2015.10.016
W. Zhang, N. Li, L. Lin, et al., Small 16(2020) 1903402.
doi: 10.1002/smll.201903402
M. Jahangiri, S. Khosravi, H. Moghtaderi, et al., Sens. Actuators B-Chem. 297(2019) 126733.
doi: 10.1016/j.snb.2019.126733
B. Chen, W. Le, Y. Wang, et al., Theranostics 6(2016) 1887-1898.
doi: 10.7150/thno.16358
S. -I. Han, C. Huang, A. Han, Lab Chip 20(2020) 3832-3841.
doi: 10.1039/D0LC00710B
Y. -C. Kung, K.R. Niazi, P. -Y. Chiou, Lab Chip 21(2021) 1049-1060.
doi: 10.1039/D0LC00853B
D. Yang, Y. Ai, Lab Chip 19(2019) 3609-3617.
doi: 10.1039/C9LC00819E
X. Huang, K. Torres-Castro, W. Varhue, et al., Lab Chip 21(2021) 835-843.
doi: 10.1039/D0LC01211D
K. -H. Han, S. -I. Han, A.B. Frazier, Lab Chip 9(2009) 2958-2964.
doi: 10.1039/b909753h
S. -I. Han, S. -M. Lee, Y. -D. Joo, K. -H. Han, Lab Chip 11(2011) 3864-3872.
doi: 10.1039/c1lc20413k
S. -I. Han, H.S. Kim, K. -H. Han, A. Han, Lab Chip 19(2019) 4128-4138.
doi: 10.1039/C9LC00850K
L. Lin, Y. -S. Chu, J.P. Thiery, C.T. Lim, I. Rodriguez, Lab Chip 13(2013) 714-721.
doi: 10.1039/c2lc41070b
D. Di Carlo, N. Aghdam, L.P. Lee, Anal. Chem. 78(2006) 4925-4930.
doi: 10.1021/ac060541s
Q. Chen, J. Wu, Y. Zhang, Z. Lin, J. -M. Lin, Lab Chip 12(2012) 5180-5185.
doi: 10.1039/c2lc40858a
X. Qin, S. Park, S.P. Duffy, et al., Lab Chip 15(2015) 2278-2286.
doi: 10.1039/C5LC00226E
Y. Liu, T. Li, M. Xu, et al., Lab Chip 19(2019) 68-78.
doi: 10.1039/C8LC01048J
J. Ko, N. Bhagwat, S.S. Yee, et al., Lab Chip 17(2017) 3086-3096.
doi: 10.1039/C7LC00703E
D. Yuan, Q. Zhao, S. Yan, et al., Lab Chip 19(2019) 2811-2821.
doi: 10.1039/C9LC00482C
Z. Ma, Y. Zhou, D.J. Collins, Y. Ai, Lab Chip 17(2017) 3176-3185.
doi: 10.1039/C7LC00678K
Y. Song, H. Yin, W.E. Huang, Curr. Opin. Chem. Biol. 33(2016) 1-8.
Y. Lyu, X. Yuan, A. Glidle, et al., Lab Chip 20(2020) 4235-4245.
doi: 10.1039/D0LC00679C
X. Hu, D. Zhu, M. Chen, et al., Lab Chip 19(2019) 2549-2556.
doi: 10.1039/C9LC00361D
M. Khan, S. Mao, W. Li, J. -M. Lin, Chem. -Eur. J. 24(2018) 15398-15420.
doi: 10.1002/chem.201800305
P. Ramachandran, R. Dobie, R. J, et al., Nature 575(2019) 512-518.
doi: 10.1038/s41586-019-1631-3
M.Y. Batiuk, A. Martirosyan, J. Wahis, et al., Nat. Commun. 11(2020) 1220.
doi: 10.1038/s41467-019-14198-8
I. Korsunsky, N. Millard, J. Fan, et al., Nat. Methods 16(2019) 1289-1296.
doi: 10.1038/s41592-019-0619-0
Y. Fan, D.Q. Dong, et al., Lab Chip 18(2018) 1151-1173.
doi: 10.1039/C7LC01333G
N. Li, W. Zhang, Y. Li, J. -M. Lin, TrAC-Trends Anal. Chem. 117(2019) 200-214.
doi: 10.1016/j.trac.2019.05.029
Q. Zhang, S. Feng, W. Li, et al., Angew. Chem. Int. Edit. 60(2021) 8483-8487.
doi: 10.1002/anie.202016171
H. Guo, X. Song, W. Lei, et al., Angew. Chem. Int. Edit. 58(2019) 12195-12199.
doi: 10.1002/anie.201907605
M.E. Gallina, T.J. Kim, M. Shelor, et al., Anal. Chem. 89(2017) 6472-6481.
doi: 10.1021/acs.analchem.7b00414
E.X. Ng, M.A. Miller, T.Y. Jing, C.H. Chen, Biosens. Bioelectron. 81(2016) 408-414.
doi: 10.1016/j.bios.2016.03.002
J. Liu, G. Sun, S. -C. Wei, et al., Lab Chip 20(2020) 1939-1946.
doi: 10.1039/C9LC01226E
Y. Wang, Q. Li, H. Shi, et al., Lab Chip 20(2020) 4632-4637.
doi: 10.1039/D0LC00677G
C.H. Camp Jr., S. Yegnanarayanan, A.A. Eftekhar, H. Sridhar, A. Adibi, Opt. Express 17(2009) 22879-22889.
doi: 10.1364/OE.17.022879
C. Zhang, K. -C. Huang, B. Rajwa, et al., Optica 4(2017) 103-109.
doi: 10.1364/OPTICA.4.000103
Y. Wang, Q. Zhang, W. Yuan, et al., Lab Chip 21(2021) 196-204.
doi: 10.1039/D0LC01006E
D.M.D. Siu, K.C.M. Lee, M.C.K. Lo, et al., Lab Chip 20(2020) 3696-3708.
doi: 10.1039/D0LC00542H
A. Kleiber, A. Ramoji, G. Mayer, et al., Lab Chip 20(2020) 1676-1686.
doi: 10.1039/D0LC00244E
Y. Luo, J. Yang, X. Zheng, et al., Lab Chip 21(2021) 75-82.
doi: 10.1039/D0LC00917B
P. Zhang, W. Wang, H. Fu, et al., Lab Chip 20(2020) 4466-4473.
doi: 10.1039/D0LC00538J
K. Mutafopulos, P.J. Lu, R. Garry, P. Spink, D.A. Weitz, Lab Chip 20(2020) 3914-3921.
doi: 10.1039/D0LC00723D
N. Hamada, Y. Hashi, S. Yamaki, et al., Chin. Chem. Lett. 30(2019) 99-102.
doi: 10.1016/j.cclet.2018.10.029
Zhang W., Zhang Q., Lin J.-M.. Cell Analysis on Microfluidics Combined with Mass Spectrometry[J]. Anal. Sci., 2021,37:249-260. doi: 10.2116/analsci.20R006
S. Mao, W. Li, Q. Zhang, et al., TrAC-Trends Anal. Chem. 107(2018) 43-59.
doi: 10.1016/j.trac.2018.06.019
L. Yin, Z. Zhang, Y. Liu, Y. Gao, J. Gu, Analyst 144(2019) 824-845.
doi: 10.1039/C8AN01190G
S. Theiner, K. Loehr, G. Koellensperger, L. Mueller, N. Jakubowski, J. Anal. At. Spectrom. 35(2020) 1784-1813.
doi: 10.1039/D0JA00194E
Y.Y. Yang, Y.Y. Huang, J.H. Wu, et al., TrAC-Trends Anal. Chem. 90(2017) 14-26.
doi: 10.1016/j.trac.2017.02.009
B. Domon, R. Aebersold, Science 312(2006) 212-217.
doi: 10.1126/science.1124619
L. Nie, G.B. Xu, X.Y. Wang, et al., Chin. Chem. Lett. 24(2013) 491-493.
doi: 10.1016/j.cclet.2013.03.053
D. Gao, H. Liu, Y. Jiang, J. -M. Lin, Lab Chip 13(2013) 3309-3322.
doi: 10.1039/c3lc50449b
Q. Huang, S. Mao, M. Khan, et al., Chem. Sci. 11(2020) 253-256.
doi: 10.1039/C9SC05143K
Q. Huang, S. Mao, M. Khan, et al., Chem. Commun. 54(2018) 2595-2598.
doi: 10.1039/C7CC09608A
M.S. Jie, S.F. Mao, H.F. Li, J.M. Lin, Chin. Chem. Lett. 28(2017) 1625-1630.
doi: 10.1016/j.cclet.2017.05.024
N. Xu, H.F. Lin, S. Lin, et al., Anal. Chem. 93(2021) 2273-2280.
doi: 10.1021/acs.analchem.0c04147
R.D. Pedde, H. Li, C.H. Borchers, M. Akbari, Trends Biotechnol 35(2017) 954-970.
doi: 10.1016/j.tibtech.2017.06.006
X. -C. Zhang, Z. -W. Wei, X. -Y. Gong, et al., Sci Rep 6(2016) 24730.
doi: 10.1038/srep24730
X. Gong, Y. Zhao, S. Cai, et al., Anal. Chem. 86(2014) 3809-3816.
doi: 10.1021/ac500882e
F. Chen, L. Lin, J. Zhang, et al., Anal. Chem. 88(2016) 4354-4360.
doi: 10.1021/acs.analchem.5b04749
A.J. Peretzki, S. Schmidt, E. Flachowsky, et al., Lab Chip 20(2020) 4456-4465.
doi: 10.1039/D0LC00936A
W. Xie, D. Gao, F. Jin, et al., Anal. Chem. 87(2015) 7052-7059.
doi: 10.1021/acs.analchem.5b00010
X. Yu, B. Chen, M. He, H. Wang, B. Hu, Talanta 179(2018) 279-284.
doi: 10.1016/j.talanta.2017.11.013
P.E. Verboket, O. Borovinskaya, N. Meyer, et al., Anal. Chem. 86(2014) 6012-6018.
doi: 10.1021/ac501149a
H. Wang, B. Chen, M. He, B. Hu, Anal. Chem. 89(2017) 4931-4938.
doi: 10.1021/acs.analchem.7b00134
S. Mao, D. Gao, W. Liu, et al., Lab Chip 12(2012) 219-226.
doi: 10.1039/C1LC20678H
K. Wang, C.L. Frewin, D. Esrafilzadeh, et al., Adv. Mater. 31(2019) 1805867.
doi: 10.1002/adma.201805867
V. Mani, B. Devadas, S. -M. Chen, Biosens. Bioelectron. 41(2013) 309-315.
doi: 10.1016/j.bios.2012.08.045
J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron. 34(2012) 70-76.
doi: 10.1016/j.bios.2012.01.016
N. Gupta, V. Renugopalakrishnan, D. Liepmann, R. Paulmurugan, B.D. Malhotra, Biosens. Bioelectron. 141(2019) 111435.
doi: 10.1016/j.bios.2019.111435
X. Lin, Q. Chen, W. Liu, et al., Biosens. Bioelectron. 63(2015) 105-111.
doi: 10.1016/j.bios.2014.07.013
M. Senel, E. Dervisevic, S. Alhassen, et al., Anal. Chem. 92(2020) 12347-12355.
doi: 10.1021/acs.analchem.0c02032
T.S. Safaei, R.M. Mohamadi, E.H. Sargent, S.O. Kelley, ACS Appl. Mater. Interfaces 7(2015) 14165-14169.
doi: 10.1021/acsami.5b02404
S.A. Hong, Y. -J. Kim, S.J. Kim, S. Yang, Biosens. Bioelectron. 107(2018) 103-110.
doi: 10.1016/j.bios.2018.01.067
J. Feng, T. Wu, Q. Cheng, et al., Lab Chip 21(2021) 378-384.
doi: 10.1039/D0LC01063D
K.C. Cheung, M. Di Berardino, G. Schade-Kampmann, et al., Cytometry Part A 77A (2010) 648-666.
doi: 10.1002/cyto.a.20910
M. Evander, A.J. Ricco, J. Morser, et al., Lab Chip 13(2013) 722-729.
doi: 10.1039/c2lc40896a
D. Holmes, D. Pettigrew, C.H. Reccius, et al., Lab Chip 9(2009) 2881-2889.
doi: 10.1039/b910053a
Z. Lin, S. -Y. Lin, P. Xie, et al., Sci Rep 10(2020) 3015.
doi: 10.1038/s41598-020-57540-7
T.W. Cowell, E. Valera, A. Jankelow, et al., Lab Chip 20(2020) 2274-2283.
doi: 10.1039/D0LC00243G
C. Honrado, P. Bisegna, N.S. Swami, F. Caselli, Lab Chip 21(2021) 22-54.
doi: 10.1039/D0LC00840K
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Wei-Tao Dou , Qing-Wen Zeng , Yan Kang , Haidong Jia , Yulian Niu , Jinglong Wang , Lin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Yan Zou , Yin-Shuang Hu , Deng-Hui Tian , Hong Wu , Xiaoshu Lv , Guangming Jiang , Yu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Si-Hua Liu , Jun-Hao Zhou , Jian-Ke Sun . Interconnecting zero-dimensional porous organic cages into sub-8 nm nanofilm for bio-inspired separation. Chinese Journal of Structural Chemistry, 2024, 43(7): 100312-100312. doi: 10.1016/j.cjsc.2024.100312
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Zhefei Hu , Jingwen Liao , Jiawen Zhou , Lulu Zhao , Yanjuan Liu , Yuefei Zhang , Wei Chen , Sheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yunan Yuan , Zhimin Luo , Jie Chen , Chaoliang He , Kai Hao , Huayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882