Allosteric conformational changes of G proteins upon its interaction with membrane and GPCR
-
*Corresponding authors.
E-mail addresses: shipan@ustc.edu.cn (P. Shi), scwei@ustc.edu.cn (C. Shi).
Citation: Longmei Li, Jin Zhang, Wenjing Sun, Weimin Gong, Changlin Tian, Pan Shi, Chaowei Shi. Allosteric conformational changes of G proteins upon its interaction with membrane and GPCR[J]. Chinese Chemical Letters, ;2022, 33(2): 747-750. doi: 10.1016/j.cclet.2021.07.042
E.A. Wold, J. Chen, K.A. Cunningham, J. Zhou, J. Med. Chem. 62(2019) 88-127.
doi: 10.1021/acs.jmedchem.8b00875
M.G. Guereschi, L.P. Araujo, J.T. Maricato, et al., Eur. J. Immunol. 43(2013) 1001-1012.
doi: 10.1002/eji.201243005
Y. Daaka, L.M. Luttrell, R.J. Lefkowitz, Nature 390(1997) 88-91.
doi: 10.1038/36362
B.R. Erdogan, M.C. Michel, E. Arioglu-Inan, Cell 9(2020) 2548-2577.
doi: 10.3390/cells9122548
S.G. Rasmussen, B.T. DeVree, Y. Zou, et al., Nature 477(2011) 549-555.
doi: 10.1038/nature10361
L.M. Wingler, M.A. Skiba, C. McMahon, et al., Science 367(2020) 888-892.
doi: 10.1126/science.aay9813
M.J. Strohman, S. Maeda, D. Hilger, et al., Nat. Commun. 10(2019) 2234.
doi: 10.1038/s41467-019-10108-0
R. Álvarez, D.J. López, J. Casas, et al., Biochim. Biophys. Acta 1851(2015) 1511-1520.
doi: 10.1016/j.bbalip.2015.08.001
M. Crouthamel, M.M. Thiyagarajan, D.S. Evanko, P.B. Wedegaertner, Cell Signal. 20(2008) 1900-1910.
doi: 10.1016/j.cellsig.2008.06.019
X. Ma, Y. Hu, H. Batebi, et al., Proc. Natl. Acad. Sci. U. S. A. 117(2020) 23096-23105.
doi: 10.1073/pnas.2009786117
W. Hu, H. Wang, Y. Hou, Y. Hao, D. Liu, FEBS Lett. 593(2019) 1113-1121.
doi: 10.1002/1873-3468.13382
Z. Zhang, T.J. Melia, F. He, C. Yuan, A. McGough, et al., J. Biol. Chem. 279(2004) 33937-33945.
doi: 10.1074/jbc.M403404200
T. Didenko, J.J. Liu, R. Horst, R.C. Stevens, K. Wuthrich, Curr. Opin. Struct. Biol. 23(2013) 740-747.
doi: 10.1016/j.sbi.2013.07.011
X. Wang, A. McFarland, J.J. Madsen, E. Aalo, L. Ye, Trends. Pharmacol. Sci. 42(2021) 19-30.
doi: 10.1016/j.tips.2020.11.001
E.N. Marsh, Y. Suzuki, ACS Chem. Biol. 9(2014) 1242-1250.
doi: 10.1021/cb500111u
X. Ma, Y. Hu, H. Batebi, et al., Proc. Natl. Acad. Sci. U. S. A. 117(2020) 23096-23105.
doi: 10.1073/pnas.2009786117
J.L. Kitevski-LeBlanc, R.S. Prosser, Prog. Nucl. Magn. Reson. Spectrosc. 62(2012) 1-33.
doi: 10.1016/j.pnmrs.2011.06.003
R. Horst, J.J. Liu, R.C. Stevens, K. Wuthrich, Angew. Chem. Int. Ed. 52(2013) 10762-10765.
doi: 10.1002/anie.201305286
J.C. Jackson, J.T. Hammill, R.A. Mehl, J. Am. Chem. Soc. 129(2007) 1160-1166.
doi: 10.1021/ja064661t
T.H. Kim, K.Y. Chung, A. Manglik, et al., J. Am. Chem. Soc. 135(2013) 9465-9474.
doi: 10.1021/ja404305k
L. Li, S.H. Chang, J.F. Xiang, et al., Chin. Chem. Lett. 23(2012) 89-92.
doi: 10.1016/j.cclet.2011.09.006
A. Manglik, T.H. Kim, M. Masureel, et al., Cell 161(2015) 1101-1111.
doi: 10.1016/j.cell.2015.04.043
M.P. Bokoch, Y. Zou, S.G.F. Rasmussen, et al., Nature 463(2010) 108-112.
doi: 10.1038/nature08650
Y. Kofuku, T. Ueda, J. Okude, et al., Nat. Commun. 3(2012) 1045.
doi: 10.1038/ncomms2046
J.J. Liu, R. Horst, V. Katritch, R.C. Stevens, K. Wüthrich, Science 335(2012) 1106-1110.
doi: 10.1126/science.1215802
L. Wang, P.G. Schultz, Chem. Commun. (2002) 1-11.
K.V. Loscha, A.J. Herlt, R. Qi, et al., Angew. Chem. Int. Ed. 51(2012) 2243-2246.
doi: 10.1002/anie.201108275
M. Zhang, M. Wen, Y. Xiong, L. Zhang, C. Tian, Chin. Chem. Lett. 29(2018) 1509-1512.
doi: 10.1016/j.cclet.2018.04.026
S. Wang, Y. Zhang, L. Zhang, M. Zhang, C. Tian, Chin. Chem. Lett. 29(2018) 1513-1516.
doi: 10.1016/j.cclet.2018.08.002
P. Zhou, P. Lv, L. Yu, et al., Chin. Chem. Lett. 30(2019) 1067-1070.
doi: 10.1016/j.cclet.2019.01.020
J. Suarez, A.M. Haapalainen, S.M. Cahill, et al., Chem. Biol. 20(2013) 212-222.
doi: 10.1016/j.chembiol.2013.01.009
J.T. Hammill, S. Miyake-Stoner, J.L. Hazen, J.C. Jackson, R.A. Mehl, Nat. Protoc. 2(2007) 2601-2607.
doi: 10.1038/nprot.2007.379
T. Flock, A.S. Hauser, N. Lund, et al., Nature 545(2017) 317-322.
doi: 10.1038/nature22070
P. Shi, Y. Zhang, P. Lv, et al., Chem. Commun. 56(2020) 6941-6944.
doi: 10.1039/D0CC02691C
K. Mio, C. Sato, Biophys. Rev. 10(2018) 307-316.
doi: 10.1007/s12551-017-0371-6
I.L.J.G. James, A.R. Dalton, BMC Bioinformatics 16(2015) 124.
doi: 10.1186/s12859-015-0567-3
M.A. Hanson, V. Cherezov, M.T. Griffith, et al., Structure 16(2008) 897-905.
doi: 10.1016/j.str.2008.05.001
Lan Yang , Yu Li , Mou Jiang , Rui Zhou , Hengjiang Cong , Minghui Yang , Lei Zhang , Shenhui Li , Yunhuang Yang , Maili Liu , Xin Zhou , Zhong-Xing Jiang , Shizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512
Wenbi Wu , Yinchu Dong , Haofan Liu , Xuebing Jiang , Li Li , Yi Zhang , Maling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Si Ha , Jiacheng Zhu , Hua Xiang , Guoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192
Wenhao Wang , Siyuan Peng , Zhengwei Huang , Xin Pan . Tuning amino/hydroxyl ratios of nanovesicles to manipulate protein corona-mediated in vivo fate. Chinese Chemical Letters, 2024, 35(11): 110134-. doi: 10.1016/j.cclet.2024.110134
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yang Liu , Leilei Zhang , Kaixuan Liu , Ling-Ling Wu , Hai-Yu Hu . Penicillin G acylase-responsive near-infrared fluorescent probe: Unravelling biofilm regulation and combating bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109759-. doi: 10.1016/j.cclet.2024.109759
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086