Bifunctional carbon-based cathode catalysts for zinc-air battery: A review
-
* Corresponding authors.
E-mail addresses: wyf8307@ustl.edu.cn (Y. Wang), chou@wzu.edu.cn (S. Chou), zzq@ustl.edu.cn (Z. Zhang).
Citation: Huimin Liu, Qinglei Liu, Yarong Wang, Yongfei Wang, Shulei Chou, Zhizhi Hu, Zhiqiang Zhang. Bifunctional carbon-based cathode catalysts for zinc-air battery: A review[J]. Chinese Chemical Letters, ;2022, 33(2): 683-692. doi: 10.1016/j.cclet.2021.07.038
Y.Y. Huang, Y.Q. Wang, C. Tang, et al., Adv. Mater. 31(2019) 1803800.
doi: 10.1002/adma.201803800
X.B. Li, X.H. Gao, P.Y. Xu, et al., ACS Sustainable Chem. Eng. 7(2019) 7148-7154.
doi: 10.1021/acssuschemeng.9b00126
S.Z. Liu, W. HaII, B.C. Cui, et al., J. Power. Sources 342(2017) 435-441.
doi: 10.1016/j.jpowsour.2016.12.080
R. Du, Y.F. Wu, Y.C. Yang, et al., Adv. Energy Mater. 11(2021) 2100154.
doi: 10.1002/aenm.202100154
J. Yu, C.X. Zhao, J.N. Liu, et al., Green Chem. Engin. 1(2020) 117-123.
doi: 10.1016/j.gce.2020.09.013
J. Pan, Y.Y. Xu, H. Yang, et al., Adv. Sci. 5(2018) 1700691-1700720.
doi: 10.1002/advs.201700691
D.P. He, Y.L. Xiong, J.L. Yang, et al., J. Mater. Chem. A 5(2017) 1930-1934.
doi: 10.1039/C5TA09232A
X.M. Liu, X.Y. Cui, K. Dastafkan, et al., J. Energy Chem. 53(2021) 290-302.
doi: 10.1016/j.jechem.2020.04.012
Y.Z. Li, R. Cao, L.B. Li, et al., Small 16(2020) 1906735.
doi: 10.1002/smll.201906735
M.C. Luo, Z.L. Zhao, Y.L. Zhang, et al., Nature 574(2019) 81-85.
doi: 10.1038/s41586-019-1603-7
X. Peng, T.J. Omasta, E. Magliocca, et al., Angew. Chem. Int. Ed. 58(2019) 1046-1051.
doi: 10.1002/anie.201811099
X.C. Chen, Z. Zhou, H.E. Karahan, et al., Small 14(2018) 1801929.
doi: 10.1002/smll.201801929
C. Tang, H.F. Wang, J.Q. Huang, et al., Electrochem. Energy Rev. 2(2019) 332-371.
doi: 10.1007/s41918-019-00033-7
S.C. Wang, Z.Y. Teng, C.Y. Wang, G.X. Wang, Chem. Sus. Chem. 11(2018) 2267-2295.
doi: 10.1002/cssc.201800509
W. Li, R. Fang, Y. Xia, et al., Batteries Supercaps 2(2019) 9-36.
doi: 10.1002/batt.201800067
D. Song, W. Guo, T. Zhang, et al., Surf. Innov. 7(2019) 10-17.
doi: 10.1680/jsuin.18.00036
J. Zhang, Q.X. Zhou, Y.W. Tang, L. Zhang, Y.G. Li, Chem. Sci. 10(2019) 8924-8929.
doi: 10.1039/C9SC04221K
G.W. Heise, US Patent (1933) 1899615.
J.H. Park, C.H. Lee, J.M. Ju, et al., Adv. Funct. Mater. 31(2021) 2101727-2101736.
doi: 10.1002/adfm.202101727
F. Wang, O. Borodin, T. Gao, et al., Nat. Mater. 17(2018) 543-549.
doi: 10.1038/s41563-018-0063-z
R.J. Chen, R. Luo, Y.X. Huang, F. Wu, L. Li, Adv. Sci. 3(2016) 1600051.
doi: 10.1002/advs.201600051
T.P. Zhou, N. Zhang, C.Z. Wu, Y. Xie, Energy Environ. Sci. 13(2020) 1132-1153.
doi: 10.1039/C9EE03634B
A. Radwan, H.H. Jin, B.S. Liu, et al., Carbon 171(2021) 368-375.
doi: 10.1016/j.carbon.2020.09.024
Y.J. Wang, B.Z. Fang, D. Zhang, et al., Electrochem. Energy Rev. 1(2018) 1-34.
doi: 10.1007/s41918-018-0002-3
X.X. Yu, T.P. Zhou, J.K. Ge, C.Z. Wu, ACS Mater. Lett. 2(2020) 1423-1434.
doi: 10.1021/acsmaterialslett.0c00339
A.R. Mainar, O. Leonet, M. Bengoechea, et al., Int. J. Energy Res. 40(2016) 1032-1049.
doi: 10.1002/er.3499
Y.P. Deng, R.L. Liang, G.P. Jiang, et al., ACS Energy Lett. 5(2020) 1665-1675.
doi: 10.1021/acsenergylett.0c00502
J.K. Wu, B. Liu, X.Y. Fan, et al., Carbon Energy 2(2020) 1-17.
doi: 10.1002/cey2.43
J. Yi, X.Y. Liu, P.C. Liang, et al., Organomet. 38(2019) 1186-1199.
doi: 10.1021/acs.organomet.8b00508
Y.P. Lei, Q.C. Wang, Z.Y. Chen, et al., J. Mater. Chem. A 6(2018) 516-526.
doi: 10.1039/C7TA08423D
J. Pan, Y.Y. Xu, H. Yang, et al., Adv. Sci. 5(2018) 1700691-1700720.
doi: 10.1002/advs.201700691
Y.C. Wang, F.L. Chu, J. Zeng, et al., ACS Nano. 15(2021) 210-239.
doi: 10.1021/acsnano.0c08652
B.Q. Li, S.Y. Zhang, B. Wang, et al., Energy Environ. Sci. 11(2018) 1723-1729.
doi: 10.1039/C8EE00977E
Z.F. Huang, J. Wang, Y.C. Peng, et al., Adv. Energy. Mater. 7(2017) 1700544.
doi: 10.1002/aenm.201700544
Y. Gao, Z.W. Cai, X.C. Wu, et al., ACS Catal. 8(2018) 10364-10374.
doi: 10.1021/acscatal.8b02360
J.J. Wang, H. Hu, H. Zhang, et al., Energy Fuels 35(2021) 6483-6503.
doi: 10.1021/acs.energyfuels.1c00388
J.W. Zhao, Z.X. Shi, C.F. Li, Q. Ren, G.R. Li, ACS Materials Lett. 3(2021) 721-737.
doi: 10.1021/acsmaterialslett.1c00018
C. Beall, E. Fabbri, T. Schmidt, ACS Catal. 11(2021) 3094-3114.
doi: 10.1021/acscatal.0c04473
C. Feng, M. Bilal Faheem, J. Fu, et al., ACS Catal. 10(2020) 4019-4047.
doi: 10.1021/acscatal.9b05445
Z.K. Yang, Y. Wang, M.Z. Zhu, et al., ACS Catal. 9(2019) 2158-2163.
doi: 10.1021/acscatal.8b04381
A. Majeed, P.X. Hou, F. Zhang, et al., Adv. Sci. 6(2019) 1802177.
doi: 10.1002/advs.201802177
H.M. Liu, X.N. Huang, Z.J. Lu, et al., Nanoscale 12(2020) 9628-9639.
doi: 10.1039/C9NR10800A
S.Y. Wang, S.M. Chen, L.T. Ma, J.A. Zapien, Mater. Today Energy 20(2021) 100659-100689.
doi: 10.1016/j.mtener.2021.100659
H.F. Wang, C. Tang, Q. Zhang, Catal. Today 301(2017) 25-31.
doi: 10.1016/j.cattod.2017.02.012
D. Yang, D. Chen, Y. Jiang, et al., Carbon Energy 3(2021) 50-65.
doi: 10.1002/cey2.88
J.K. Wu, B. Liu, X.Y. Fan, et al., Carbon Energy 2(2020) 370-386.
doi: 10.1002/cey2.60
H. Wang, Y. Shao, S.L. Mei, et al., Chem. Rev. 120(2020) 9363-9419.
doi: 10.1021/acs.chemrev.0c00080
J.F. Sun, Q.Q. Xu, J.L. Qi, et al., ACS Sustainable Chem. Eng. 8(2020) 14630-14656.
doi: 10.1021/acssuschemeng.0c04324
H.R. Pan, X.N. Huang, Z.J. Lu, et al., Chem. Eng. J. 419(2021) 129619.
doi: 10.1016/j.cej.2021.129619
Q.L. Wu, Q. Liu, Y.J. Zhou, et al., ACS Appl. Mater. Inter. 10(2018) 39735-39744.
doi: 10.1021/acsami.8b14323
X.C. Yan, Y. Jia, X.D. Yao, Chem. Soc. Rev. 47(2018) 7628-7658.
doi: 10.1039/C7CS00690J
D.F. Yan, Y.X. Li, J. Huo, et al., Adv. Mater. 29(2017) 1606459.
doi: 10.1002/adma.201606459
A. Shen, Y. Zou, Q. Wang, et al., Angew. Chem. Int. Ed. 53(2014) 10804-10809.
doi: 10.1002/anie.201406695
Y.F. Jiang, L.J. Yang, T. Sun, et al., ACS Catal. 5(2015) 6707-6712.
doi: 10.1021/acscatal.5b01835
H. Jin, H.H. Huang, Y.H. He, et al., J. Am. Chem. Soc. 137(2015) 7588-7591.
doi: 10.1021/jacs.5b03799
Y. Jia, L. Zhang, A. Du, et al., Adv. Mater. 28(2016) 9532-9538.
doi: 10.1002/adma.201602912
L. Tao, Q. Wang, S. Dou, et al., Chem. Commun. 52(2016) 2764-2767.
doi: 10.1039/C5CC09173J
Y.Q. Zhang, L. Guo, L. Tao, Y.B. Lu, S.Y. Wang, Small Methods 29(2018) 1800406.
H.M. Liu, J.X. Cheng, Z.J. Lu, et al., Electrochim. Acta 312(2019) 22-30.
doi: 10.1016/j.electacta.2019.04.171
J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorósa, Carbon 165(2020) 434-454.
doi: 10.1016/j.carbon.2020.04.068
C. Sathiskumar, S. Ramakrishnan, M. Vinothkannan, et al., Nanomaterials 10(2020) 76-91.
C. Tang, H.F. Wang, X. Chen, et al., Adv. Mater. 28(2016) 6845-6851.
doi: 10.1002/adma.201601406
J.T. Ren, G.G. Yuan, C.C. Weng, L. Chen, Z.Y. Yuan, Chem. Cat. Chem. 10(2018) 5297-5305.
H.B. Yang, J.W. Miao, S.F. Hung, et al., Sci. Adv. 2(2016) 1501122.
doi: 10.1126/sciadv.1501122
Q.C. Wang, Y.P. Lei, Y.G. Zhu, et al., ACS Appl. Mater. Inter. 10(2018) 29448-29456.
doi: 10.1021/acsami.8b07863
S.J. Yi, X.P. Qin, C.H. Liang, et al., Appl. Catal. B: Environ. 264(2020) 118537-118574.
doi: 10.1016/j.apcatb.2019.118537
T. Sun, J. Wang, C.T. Qiu, et al., Adv. Sci. 5(2018) 1800036.
C.G. Hu, L.M. Dai, Adv. Mater. 29(2017) 1604942.
doi: 10.1002/adma.201604942
R. Li, Z.D. Wei, X.L. Gou, ACS Catal. 5(2015) 4133-4142.
doi: 10.1021/acscatal.5b00601
M.G. Wu, Y.Q. Wang, Z.X. Wei, et al., J. Mater. Chem. A 6(2018) 10918-10925.
doi: 10.1039/C8TA02416B
L. Chen, L.L. Cui, Z.Z. Wang, et al., ACS Sustainable Chem. Eng. 8(2020) 13147-13158.
doi: 10.1021/acssuschemeng.0c00124
L.J. Yang, S.Z. Feng, G.C. Xu, B. Wei, L. Zhang, ACS Sustainable Chem. Eng. 7(2019) 5462-5475.
doi: 10.1021/acssuschemeng.8b06624
W.C. Jiang, Y.L. Li, Y.S. Xu, et al., Chem. Eng. J. 421(2021) 129689.
doi: 10.1016/j.cej.2021.129689
Z. Ma, K.X. Wang, Y.F. Qiu, et al., Energy 143(2018) 43-55.
doi: 10.1016/j.energy.2017.10.110
J. Fu, F.M. Hassan, C. Zhong, et al., Adv. Mater. 29(2017) 1702526.
doi: 10.1002/adma.201702526
W.F. Xie, Z.H. Li, S. Jiang, et al., Chem. Eng. J. 373(2019) 734-743.
doi: 10.1016/j.cej.2019.04.066
G. Anandhababu, S.C. Abbas, L. Jiangquan, et al., Dalton T. 46(2017) 1803-1810.
doi: 10.1039/C6DT04705J
X.L. Tan, D.H. He, X.W. Zhang, J. Electrochem. 25(2019) 601-607.
T. Tang, W.J. Jiang, X.Z. Liu, et al., J. Am. Chem. Soc. 142(2020) 7116-7127.
doi: 10.1021/jacs.0c01349
J.-.S. Lee, S. Sarawutanukul, M. Sawangphruk, S. Horike, A.C.S. Sustain, Chem. Eng. 7(2019) 4030-4036.
W.Z. Cheng, P.F. Yuan, Z.R. Lv, et al., Appl. Catal. B: Environ. 260(2020) 118198-118206.
doi: 10.1016/j.apcatb.2019.118198
G.Y. Ren, L.L. Gao, C. Teng, et al., ACS Appl. Mater. Inter. 10(2018) 10778-10785.
doi: 10.1021/acsami.7b16936
J. Wang, H.H. Wu, D.F. Gao, et al., Nano Energy 13(2015) 387-396.
doi: 10.1016/j.nanoen.2015.02.025
J. Park, M. Park, G. Nam, J. Lee, J. Cho, Adv. Mater. 27(2015) 1396-1401.
doi: 10.1002/adma.201404639
P. Yu, L. Wang, F.F. Sun, et al., Adv. Mater. 31(2019) 1901666.
W.F. Xie, Z.H. Li, S. Jiang, et al., Chem. Eng. J. 373(2019) 734-743.
doi: 10.1016/j.cej.2019.04.066
J.Y. Qin, Z.W. Liu, D.Y. Wu, J. Yang, Appl. Catal. B: Environ. 278(2020) 119300-119309.
doi: 10.1016/j.apcatb.2020.119300
Y.P. Li, J.Y. Gao, F. Zhang, et al., J. Mater. Chem. A 6(2018) 15523-15529.
doi: 10.1039/C8TA06057F
X.D. Duan, S.S. Ren, N. Pan, M.D. Zhang, H.G. Zheng, J. Mater. Chem. A 8(2020) 9355-9363.
doi: 10.1039/D0TA02825H
Q.Y. Zhou, Z. Zhang, J. Cai, et al., Nano Energy 71(2020) 104592-104601.
doi: 10.1016/j.nanoen.2020.104592
J.C. Li, X.T. Wu, L.J. Chen, N. Li, Z.Q. Liu, Energy 156(2018) 95-102.
doi: 10.1016/j.energy.2018.05.096
S.C. Cai, R. Wang, W. Yourey, et al., Sci. Bull. 64(2019) 968-975.
doi: 10.1016/j.scib.2019.05.020
Y.J. Zhong, X.M. Xu, W. Wang, Z.P. Shao, Batteries Supercaps 2(2019) 272-289.
doi: 10.1002/batt.201800093
S. Gadipelli, T.T. Zhao, S. Shevlin, Z.X. Guo, Energy Environ. Sci. 9(2016) 1661-1667.
doi: 10.1039/C6EE00551A
E.H. Zhang, Y. Xie, S.Q. Ci, et al., J. Mater. Chem. A 4(2016) 17288-17298.
doi: 10.1039/C6TA06185K
Y. Zhu, Z.Y. Zhang, Z. Lei, et al., Carbon 167(2020) 188-195.
doi: 10.1016/j.carbon.2020.06.006
J.B. Zhu, M.L. Xiao, Y.L. Zhang, et al., ACS Catal. 6(2016) 6335-6342.
doi: 10.1021/acscatal.6b01503
L.S. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60(2021) 7576-7581.
doi: 10.1002/anie.202015478
H.N. Qin, Y.Z. Wang, B. Wang, et al., J. Energy Chem. 53(2021) 77-81.
doi: 10.1016/j.jechem.2020.05.015
L.S. Xie, X.L. Li, B. Wang, et al., Angew. Chem. Int. Ed. 58(2019) 18883-18887.
doi: 10.1002/anie.201911441
Z.Z. Liang, H.Y. Wang, H.Q. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 50(2021) 2540-2581.
doi: 10.1039/D0CS01482F
M. Jahan, Q. Bao, K.P. Loh, J. Am. Chem. Soc. 134(2012) 6707-6713.
doi: 10.1021/ja211433h
Z.Z. Liang, H.B. Guo, G.J. Zhou, et al., Angew. Chem. Int. Ed. 60(2021) 8472-8476.
doi: 10.1002/anie.202016024
Y. Peng, B.Z. Lu, S.W. Chen, Adv. Mater. 30(2018) 1801995-1802072.
doi: 10.1002/adma.201801995
Y.Q. Su, Y. Wang, J.X. Liu, et al., ACS Catal. 9(2019) 3289-3297.
doi: 10.1021/acscatal.9b00252
X. Hai, X.X. Zhao, N. Guo, et al., ACS Catal. 10(2020) 5862-5870.
doi: 10.1021/acscatal.0c00936
C. Du, Y.J. Gao, J.G. Wang, W. Chen, J. Mater. Chem. A 8(2020) 9981-9990.
doi: 10.1039/D0TA03457F
B.Q. Li, C.X. Zhao, S.M. Chen, W. Chen, Adv. Mater. 31(2019) 1900592.
doi: 10.1002/adma.201900592
X.X. Wang, D. Cullen, Y.T. Pan, et al., Adv. Mater. 30(2018) 1706758.
doi: 10.1002/adma.201706758
S.L. Chou, Y. Wu, Q. Zhang, Y.M. Kang, Small Methods 3(2019) 1900523-1900524.
doi: 10.1002/smtd.201900523
X. Liu, S.F. Jia, M. Yang, et al., Nat. Commun. 11(2020) 4240-4247.
doi: 10.1038/s41467-020-18076-6
K. Jiang, B.Y. Liu, M. Luo, et al., Nat. Commun. 10(2019) 1743-1751.
doi: 10.1038/s41467-019-09765-y
T. Gan, Y.F. Liu, Q. He, et al., ACS Sustainable Chem. Eng. 8(2020) 8692-8699.
doi: 10.1021/acssuschemeng.0c02065
D.X. Yan, J. Chen, H.P. Jia, Angew. Chem. Int. Ed. 59(2020) 13562-13567.
doi: 10.1002/anie.202004929
A.M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, et al., J. Am. Chem. Soc. 141(2019) 5201-5210.
doi: 10.1021/jacs.8b11386
Y. Zheng, S.Z. Qiao, Natl. Sci. Rev. 5(2018) 626-627.
doi: 10.1093/nsr/nwy010
Y.C. Wang, F.L. Chu, J. Zeng, et al., ACS Nano 15(2021) 210-239.
doi: 10.1021/acsnano.0c08652
H.G. Huang, K. Shen, F.F. Chen, Y.W. Li, ACS Catal. 10(2020) 6579-6607.
doi: 10.1021/acscatal.0c01459
A.J. Han, B.Q. Wang, A. Kumar, et al., Small Methods 3(2019) 1800471.
doi: 10.1002/smtd.201800471
B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130(2008) 5390-5391.
doi: 10.1021/ja7106146
C.C. Hou, H.F. Wang, C.X. Li, Q. Xu, Energ. Environ. Sci. 13(2020) 1658-1693.
doi: 10.1039/C9EE04040D
Y.S. Wei, M. Zhang, R.Q. Zou, Q. Xu, Chem. Rev. 120(2020) 12089-12174.
doi: 10.1021/acs.chemrev.9b00757
J.X. Han, X.Y. Meng, L. Lu, et al., Adv. Funct. Mater. 29(2019) 1808872.
doi: 10.1002/adfm.201808872
L. Yang, L. Shi, D. Wang, Y.L. Lv, D.P. Cao, Nano Energy 50(2018) 691-698.
doi: 10.1016/j.nanoen.2018.06.023
J.J. Guo, J.J. Huo, Y. Liu, et al., Small Methods 3(2019) 1900159.
doi: 10.1002/smtd.201900159
Z.L. Jiang, W.M. Sun, H.S. Shang, et al., Energ. Environ. Sci. 12(2019) 3508-3514.
doi: 10.1039/C9EE02974E
Y.J. Chen, S.F. Ji, S. Zhao, et al., Nat. Commun. 9(2018) 5422-5433.
doi: 10.1038/s41467-018-07850-2
Z.X. Song, L. Zhang, K. Doyle-Davis, et al., Adv. Energy Mater. 10(2020) 2001561-2001602.
doi: 10.1002/aenm.202001561
J. Zhang, Q.A. Huang, J. Wang, et al., Chin. J. Catal. 41(2020) 783-798.
doi: 10.1016/S1872-2067(20)63536-7
B.Z. Lu, Q.M. Liu, S.W. Chen, ACS Catal. 10(2020) 7584-7618.
doi: 10.1021/acscatal.0c01950
X. Zhou, Q. Shen, K.D. Yuan, et al., J. Am. Chem. Soc. 140(2018) 554-557.
doi: 10.1021/jacs.7b10394
J. Li, S.G. Chen, N. Yang, et al., Angew. Chem. Inter. Ed. 58(2019) 7035-7039.
doi: 10.1002/anie.201902109
H.S. Shang, W.M. Sun, R. Sui, J.J. Pei, Y.D. Li, Nano Lett. 7(2020) 5443-5450.
S.R. Chen, M. Cui, Z.H. Yin, et al., ChemSusChem 14(2021) 73-93.
doi: 10.1002/cssc.202002098
G.G. Yang, J.W. Zhu, P.F. Yuan, et al., Nat. Commun. 12(2021) 1734-1743.
doi: 10.1038/s41467-021-21919-5
Z.C. Yao, T. Tang, J.S. Hu, L.J. Wan, Energy Fuels 35(2021) 6380-6401.
doi: 10.1021/acs.energyfuels.1c00275
X.P. Han, X.F. Ling, D.S. Yu, et al., Adv. Mater. 31(2019) 1905622.
doi: 10.1002/adma.201905622
Z.H. Li, H.Y. He, H.B. Cao, et al., Appl. Catal. B: Environ. 240(2019) 112-121.
doi: 10.1016/j.apcatb.2018.08.074
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Yingfen Li , Zhiqi Wang , Yunhai Zhao , Dajun Luo , Xueliang Zhang , Jun Zhao , Zhenghua Su , Shuo Chen , Guangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418