Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction
-
* Corresponding authors.
E-mail addresses: iamqzhao@njupt.edu.cn (Q. Zhao).
Citation:
Weiwei Zhao, Beibei Jin, Longlu Wang, Chengbo Ding, Mengyue Jiang, Tiantian Chen, Shuaihang Bi, Shujuan Liu, Qiang Zhao. Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction[J]. Chinese Chemical Letters,
;2022, 33(1): 557-561.
doi:
10.1016/j.cclet.2021.07.035
X. Zhang, Z. Luo, P. Yu, et al., Nat. Catal.1 (2018) 460–468.
doi: 10.1038/s41929-018-0072-y
Y. Zhang, L. Xue, C. Liang, et al., Appl. Surface Sci. 561 (2021) 150079.
doi: 10.1016/j.apsusc.2021.150079
C. Tan, X. Cao, X. Wu, et al., Chem. Rev. 117 (2017) 6225–6331.
doi: 10.1021/acs.chemrev.6b00558
T. Yang, C. Cui, J.Z.H. Rong, et al., Acta Phys. Chim. Sin. 36 (2020) 2003047.
doi: 10.3866/pku.whxb202003047
L. Wang, L. Xie, W. Zhao, et al., Chem. Eng. J. 405 (2021) 127028.
doi: 10.1016/j.cej.2020.127028
G. Zhou, L. Xu, G. Hu, et al., Chem. Rev. 119 (2019) 11042–11109.
doi: 10.1021/acs.chemrev.9b00326
Q. Wei, F. Xiong, S. Tan, et al., Adv. Mater. 29 (2017) 1602300.
doi: 10.1002/adma.201602300
N. Tapia-Ruiz, A.G. Gordon, C.M. Jewell, et al., Nat. Commun. 11 (2020) 4492.
doi: 10.1038/s41467-020-17951-6
A. K. Pearce, T.R. Wilks, M.C. Arno, et al., Nat. Rev. Chem. 5 (2021) 21–45.
doi: 10.1038/s41570-020-00232-7
X. Cao, Y. Han, C. Gao, et al., Nano Energy9 (2014) 301–308.
doi: 10.1016/j.nanoen.2014.08.008
C. Wang, W. Qi, Y. Zhou, et al., Chem. Eng. J. 381 (2020) 122611.
doi: 10.1016/j.cej.2019.122611
P. Zhai, Y. Zhang, Y. Wu, et al., Nat. Commun. 11 (2020) 5462.
doi: 10.1038/s41467-020-19214-w
W. Feng, W. Pang, Y. Xu, et al., Chem. Electro. Chem. 7 (2020) 31–54.
doi: 10.1002/celc.201901623
L. Zhai, T.W. Benedict Lo, Z.L. Xu, et al., ACS Energy Lett. 5 (2020) 2483–2491.
doi: 10.1021/acsenergylett.0c01385
Y. Pei, Y. Cheng, J. Chen, et al., J. Mater. Chem. A6 (2018) 23220–23243.
doi: 10.1039/c8ta09454c
S. Xu, H. Zhao, T. Li, et al., J. Mater. Chem. A8 (2020) 19729–19745.
doi: 10.1039/d0ta05628f
M.S. Faber, R. Dziedzic, M.A. Lukowski, et al., J. Am. Chem. Soc. 136 (2014) 10053–10061.
doi: 10.1021/ja504099w
W. Zhao, J. Peng, W. Wang, et al., Small15 (2019) 1901351.
doi: 10.1002/smll.201901351
J. Nan, X. Guo, J. Xiao, et al., Small17 (2021) 1902085.
doi: 10.1002/smll.201902085
D. Xiong, X. Li, Z. Bai, et al., Small14 (2018) 1703419.
doi: 10.1002/smll.201703419
P. Lian, Y. Dong, Z.S. Wu, et al., Nano Energy40 (2017) 1–8.
doi: 10.1016/j.nanoen.2017.08.002
Y. Dong, S. Zheng, J. Qin, et al., ACS Nano12 (2018) 2381–2388.
doi: 10.1021/acsnano.7b07672
S.Y. Pang, W. F. Io, LW. Wong, et al., Adv. Sci. 7 (2020) 1903680.
doi: 10.1002/advs.201903680
W. Yuan, L. Cheng, Y. An, et al., ACS Sustainable Chem. Eng. 6 (2018) 8976–8982.
doi: 10.1021/acssuschemeng.8b01348
X. Zhu, B. Liu, H. Hou, et al., Electrochim. Acta248 (2017) 46–57.
doi: 10.1016/j.electacta.2017.07.084
D. Zhang, J. Cao, X. Zhang, et al., ACS Appl. Energy Mater. 3 (2020) 5949–5964.
doi: 10.1021/acsaem.0c00863
X. Wang, S. Kajiyama, H. Iinuma, et al., Nat. Commun. 6 (2015) 6544.
doi: 10.1038/ncomms7544
J. Tang, T. Mathis, X. Zhong, et al., Adv. Energy Mater. 11 (2021) 2003025.
doi: 10.1002/aenm.202003025
C. Zhang, B. Anasori, A. Seral-Ascaso, et al., Adv. Mater. 29 (2017) 1702678.
doi: 10.1002/adma.201702678
Z. Jin, C. Liu, Z. Liu, et al., Adv. Energy Mater. 10 (2020) 2000797.
doi: 10.1002/aenm.202000797
R. Qin, M. Hu, X. Li, et al., Nanoscale12 (2020) 17715–17724.
doi: 10.1039/d0nr02012e
O. Mashtalir, M. Naguib, V. N. Mochalin, et al., Nat. Commun. 4 (2013) 1716.
doi: 10.1038/ncomms2664
D. Zhao, M. Clites, G. Ying, et al., Chem. Commun. 54 (2018) 4533–4536.
doi: 10.1039/c8cc00649k
N. Li, Y. Jiang, C. Zhou, et al., ACS Appl. Mater. Interfaces11 (2019) 38116–38125.
doi: 10.1021/acsami.9b12168
B. Zhang, J. Zhu, P. Shi, et al., Ceram. Int. 45 (2019) 8395–8405.
doi: 10.1016/j.ceramint.2019.01.148
W. Zhao, C. Zhang, F. Geng, et al., ACS Nano8 (2014) 10909–10919.
doi: 10.1021/nn504755x
Y. Jiang, T. Sun, X. Xie, et al., Chem. Sus. Chem12 (2019) 1368–1373.
doi: 10.1002/cssc.201803032
J. Hou, Y. Wu, B. Zhang, et al., Adv. Funct. Mater. 29 (2019) 1808367.
doi: 10.1002/adfm.201808367
F. Du, L. Shi, Y. Zhang, et al., Appl. Catal. B: Environ. 253 (2019) 246–252.
doi: 10.1016/j.apcatb.2019.04.067
Z. Peng, D. Jia, A.M. Al-Enizi, et al., Adv. Energy Mater. 5 (2015) 1402031.
doi: 10.1002/aenm.201402031
S.Y. Pang, Y.T. Wong, S. Yuan, et al., J. Am. Chem. Soc. 141 (2019) 9610–9616.
doi: 10.1021/jacs.9b02578
Z.W. Seh, K.D. Fredrickson, B. Anasori, et al., ACS Energy Lett. 1 (2016) 589–594.
doi: 10.1021/acsenergylett.6b00247
J. Liu, Z. Bao, Y. Cui, et al., Nat. Energy4 (2019) 180–186.
doi: 10.1038/s41560-019-0338-x
K. Yu, X. Pan, G. Zhang, et al., Adv. Energy Mater. 8 (2018) 1802369.
doi: 10.1002/aenm.201802369
Y. Wang, Y. Liu, Y. Liu, et al., J. Energy Chem. 54 (2021) 225–241.
doi: 10.1016/j.jechem.2020.05.065
L. Yang, J. Guo, T. Yang, et al., J. Hazard. Mater. 402 (2021) 123741.
doi: 10.1016/j.jhazmat.2020.123741
J. Yu, W. Gu, H. Zhao, et al., Sci. China Mater. 64 (2021) 1723–1732.
doi: 10.1007/s40843-020-1557-3
T. Yun, H. Kim, A. Iqbal, et al., Adv. Mater. 32 (2020) 1906769.
doi: 10.1002/adma.201906769
X. Li, K. Ding, B. Gao, et al., Nano Energy40 (2017) 655–662.
doi: 10.1360/N032016-00211
W. Liu, N. Liu, Y. Yue, et al., Small14 (2018) 1704149.
doi: 10.1002/smll.201704149
Y. Ma, N. Liu, L. Li, et al., Nat. Commun. 8 (2017) 1207.
doi: 10.1038/s41467-017-01136-9
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930