Strain of 2D materials via substrate engineering
-
* Corresponding authors.
E-mail addresses: lili2sohu@hnu.edu.cn (Q. Dong), liusong@hnu.edu.cn (S. Liu).
Citation:
Yangwu Wu, Lu Wang, Huimin Li, Qizhi Dong, Song Liu. Strain of 2D materials via substrate engineering[J]. Chinese Chemical Letters,
;2022, 33(1): 153-162.
doi:
10.1016/j.cclet.2021.07.001
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Nature 438 (2005) 197-200.
doi: 10.1038/nature04233
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666-669.
doi: 10.1126/science.1102896
Z. Cai, B. Liu, X. Zou, et al., Chem. Rev. 118 (2018) 6091-6133.
doi: 10.1021/acs.chemrev.7b00536
Y. Chen, Z. Fan, Z. Zhang, et al., Chem. Rev. 118 (2018) 6409-6455.
doi: 10.1021/acs.chemrev.7b00727
H. Zhang, ACS Nano 9 (2015) 9451-9469.
doi: 10.1021/acsnano.5b05040
W. Li, M. Dai, Y. Hu, et al., ACS Appl. Mater. Interfaces 11 (2019) 47098-47105.
doi: 10.1021/acsami.9b17448
G. Plechinger, A. Castellanos-Gomez, M. Buscema, et al., 2D Materials 2 (2015) 015006.
doi: 10.1088/2053-1583/2/1/015006
B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6 (2011) 147-150.
doi: 10.1038/nnano.2010.279
L. Kong, X. Zhang, Q. Tao, et al., Nat. Commun. 11 (2020) 1866.
doi: 10.1038/s41467-020-15776-x
S. Lippert, L.M. Schneider, D. Renaud, et al., 2D Materials 4 (2017) 025045.
L. Wang, Z.N. Nilsson, M. Tahir, et al., ACS Appl. Mater. Interfaces 12 (2020) 15034-15042.
doi: 10.1021/acsami.9b21230
M. Blei, J.L. Lado, Q. Song, et al., Appl. Phys. Rev. 8 (2021) 021301.
doi: 10.1063/5.0025658
H. Yang, Q. He, Y. Liu, et al., Chem. Soc. Rev. 49 (2020) 2916-2936.
doi: 10.1039/c9cs00601j
G.R. Bhimanapati, Z. Lin, V. Meunier, et al., ACS Nano 9 (2015) 11509-11539.
doi: 10.1021/acsnano.5b05556
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225-6331.
doi: 10.1021/acs.chemrev.6b00558
E. Scalise, M. Houssa, G. Pourtois, et al., Nano Res. 5 (2012) 43-48.
doi: 10.1007/s12274-011-0183-0
L. Wang, A. Kutana, B.I. Yakobson, Ann. Phys-Berlin. 526 (2014) L7-L12.
doi: 10.1002/andp.201400098
Y. Jin, Z. Zeng, Z. Xu, et al., Chem. Mater. 31 (2019) 3534-3541.
doi: 10.1021/acs.chemmater.9b00913
R. Rong, S. Liu, Chin. Chem. Lett. 31 (2020) 565-569.
doi: 10.1016/j.cclet.2019.05.014
G. Shao, X.X. Xue, B. Wu, et al., Adv. Funct. Mater. 30 (2020) 1906069.
doi: 10.1002/adfm.201906069
G. Shao, Y. Lu, J. Hong, et al., Adv. Sci. 7 (2020) 2002172.
doi: 10.1002/advs.202002172
N.C. Frey, D. Akinwande, D. Jariwala, et al., ACS Nano 14 (2020) 13406-13417.
doi: 10.1021/acsnano.0c05267
J. Klein, M. Lorke, M. Florian, et al., Nat. Commun. 10 (2019) 2755.
doi: 10.1038/s41467-019-10632-z
J. Feng, X. Qian, C.W. Huang, et al., Nat. Photonics 6 (2012) 866-872.
doi: 10.1038/nphoton.2012.285
W. Hou, A. Azizimanesh, A. Sewaket, et al., Nat. Nanotechnol. 14 (2019) 668-673.
doi: 10.1038/s41565-019-0466-2
S. -J. Liang, B. Cheng, X. Cui, et al., Adv. Mater. 32 (2020) 1903800.
Y. Sun, R. Wang, K. Liu, Appl. Phys. Rev. 4 (2017) 011301.
doi: 10.1063/1.4974072
D. Akinwande, C.J. Brennan, J.S. Bunch, et al., Extreme Mech. Lett. 13 (2017) 42-77.
doi: 10.1016/j.eml.2017.01.008
W. Wu, L. Wang, Y. Li, et al., Nature 514 (2014) 470-474.
doi: 10.1038/nature13792
K.W. Chung, Z. Wang, J.C. Costa, et al., Appl. Phys. Lett. 59 (1991) 1191-1193.
doi: 10.1063/1.105499
S. Yang, C. Wang, H. Sahin, et al., Nano Lett. 15 (2015) 1660-1666.
doi: 10.1021/nl504276u
P. Lu, X. Wu, W. Guo, et al., Phys. Chem. Chem. Phys. 14 (2012) 13035-13040.
doi: 10.1039/c2cp42181j
Y. Liu, Y. Huang, X. Duan, Nature 567 (2019) 323-333.
doi: 10.1038/s41586-019-1013-x
Z. Zhang, P. Chen, X. Duan, et al., Science 357 (2017) 788-792.
doi: 10.1126/science.aan6814
Y. He, P. Tang, Z. Hu, et al., Nat. Commun. 11 (2020) 57.
doi: 10.1038/s41467-019-13631-2
T. Liu, S. Liu, K. -H. Tu, et al., Nat. Nanotechnol. 14 (2019) 223-226.
doi: 10.1038/s41565-019-0361-x
Y. -C. Lin, B. Jariwala, B.M. Bersch, et al., ACS Nano 12 (2018) 965-975.
doi: 10.1021/acsnano.7b07059
W.H. Chae, J.D. Cain, E.D. Hanson, et al., Appl. Phys. Lett. 111 (2017) 143106.
doi: 10.1063/1.4998284
C. Palacios-Berraquero, D.M. Kara, A.R.P. Montblanch, et al., Nat. Commun. 8 (2017) 15093.
doi: 10.1038/ncomms15093
S.W. Wang, H. Medina, K. -B. Hong, et al., ACS Nano 11 (2017) 8768-8776.
doi: 10.1021/acsnano.7b02444
A. Reserbat-Plantey, D. Kalita, Z. Han, et al., Nano Lett. 14 (2014) 5044-5051.
doi: 10.1021/nl5016552
J. Flesch, M. Bettenhausen, M. Kazmierczak, et al., ACS Appl. Mater. Interfaces 13 (2021) 8049-8059.
doi: 10.1021/acsami.0c22421
S. Pak, J. Lee, Y.W. Lee, et al., Nano Lett. 17 (2017) 5634-5640.
doi: 10.1021/acs.nanolett.7b02513
G.H. Ahn, M. Amani, H. Rasool, et al., Nat. Commun. 8 (2017) 608.
doi: 10.1038/s41467-017-00516-5
Y. Yu, T. Minhaj, L. Huang, et al., Phys. Rev. Appl. 13 (2020) 034059.
doi: 10.1103/PhysRevApplied.13.034059
H. Li, A.W. Contryman, X. Qian, et al., Nat. Commun. 6 (2015) 7381.
doi: 10.1038/ncomms8381
B. Lyu, H. Li, L. Jiang, et al., Nano Lett. 19 (2019) 1982-1989.
doi: 10.1021/acs.nanolett.8b05166
M.S. Dresselhaus, A. Jorio, R. Saito, Annu. Rev. Conden. Matter. Phys. 1 (2010) 89-108.
doi: 10.1146/annurev-conmatphys-070909-103919
J. Chaste, A. Missaoui, S. Huang, et al., ACS Nano 12 (2018) 3235-3242.
doi: 10.1021/acsnano.7b07689
J. Hu, J. Gou, M. Yang, et al., Adv. Mater. 32 (2020) 2002201.
doi: 10.1002/adma.202002201
Y. Zhou, Z. Wang, P. Yang, et al., ACS Nano 6 (2012) 9727-9736.
doi: 10.1021/nn303198w
T. Li, Phys. Rev. B 85 (2012) 235407.
doi: 10.1103/PhysRevB.85.235407
H.J. Conley, B. Wang, J.I. Ziegler, et al., Nano Lett. 13 (2013) 3626-3630.
doi: 10.1021/nl4014748
D. Lloyd, X. Liu, J.W. Christopher, et al., Nano Lett. 16 (2016) 5836-5841.
doi: 10.1021/acs.nanolett.6b02615
Z. Li, Y. Lv, L. Ren, et al., Nat. Commun. 11 (2020) 1151.
doi: 10.1038/s41467-020-15023-3
A. Chaves, J.G. Azadani, H. Alsalman, et al., NPJ 2D Mater. Appl. 4 (2020) 29.
doi: 10.1038/s41699-020-00162-4
I. Niehues, R. Schmidt, M. Drüppel, et al., Nano Lett. 18 (2018) 1751-1757.
doi: 10.1021/acs.nanolett.7b04868
E. Khestanova, F. Guinea, L. Fumagalli, et al., Nat. Commun. 7 (2016) 12587.
doi: 10.1038/ncomms12587
T.P. Darlington, A. Krayev, V. Venkatesh, et al., J. Chem. Phys. 153 (2020) 024702.
doi: 10.1063/5.0012817
F. Pizzocchero, L. Gammelgaard, B.S. Jessen, et al., Nat. Commun. 7 (2016) 11894.
doi: 10.1038/ncomms11894
T. Iwasaki, K. Endo, E. Watanabe, et al., ACS Appl. Mater. Interfaces 12 (2020) 8533-8538.
doi: 10.1021/acsami.9b19191
N. Levy, S.A. Burke, K.L. Meaker, et al., Science 329 (2010) 544-547.
doi: 10.1126/science.1191700
H. Li, C. Tsai, A.L. Koh, et al., Nat. Mater. 15 (2016) 48-53.
doi: 10.1038/nmat4465
X. Song, F. Hui, T. Knobloch, et al., Appl. Phys. Lett. 111 (2017) 083107.
doi: 10.1063/1.5000496
P. Ares, T. Cea, M. Holwill, et al., Adv. Mater. 32 (2020) 1905504.
doi: 10.1002/adma.201905504
W. Wang, L. Zhou, S. Hu, et al., Adv. Funct. Mater. 31 (2021) 2005053.
doi: 10.1002/adfm.202005053
S. Fan, Q.A. Vu, M.D. Tran, et al., 2D Materials 7 (2020) 022005.
Z. Dai, Y. Hou, D.A. Sanchez, et al., Phys. Rev. Lett. 121 (2018) 266101.
doi: 10.1103/PhysRevLett.121.266101
C. Martella, C. Mennucci, E. Cinquanta, et al., Adv. Mater. 29 (2017) 1605785.
doi: 10.1002/adma.201605785
J. Quereda, P. San-Jose, V. Parente, et al., Nano Lett. 16 (2016) 2931-2937.
doi: 10.1021/acs.nanolett.5b04670
S. Deng, S. Che, R. Debbarma, et al., Nanoscale 11 (2019) 504-511.
doi: 10.1039/c8nr05884a
F. Zheng, Q.H. Thi, L.W. Wong, et al., ACS Nano 14 (2020) 2137-2144.
doi: 10.1021/acsnano.9b08928
Z. Cheng, M. Xia, S. Liu, et al., Appl. Surf. Sci. 476 (2019) 1008-1015.
doi: 10.1016/j.apsusc.2019.01.211
A. Aljarb, J.H. Fu, C.C. Hsu, et al., Nat. Mater. 19 (2020) 1300-1306.
doi: 10.1038/s41563-020-0795-4
R.N. Wenzel, Ind. Eng. Chem. 28 (1936) 988-994.
doi: 10.1021/ie50320a024
L. Chen, B. Liu, M. Ge, et al., ACS Nano 9 (2015) 8368-8375.
doi: 10.1021/acsnano.5b03043
H. Liu, G. Qi, C. Tang, et al., ACS Appl. Mater. Interfaces 12 (2020) 13174-13181.
doi: 10.1021/acsami.9b22397
Y. Jin, M. Cheng, H. Liu, et al., Chem. Mater. 32 (2020) 5616-5625.
doi: 10.1021/acs.chemmater.0c01089
P.V. Sarma, A. Kayal, C.H. Sharma, et al., ACS Nano 13 (2019) 10448-10455.
doi: 10.1021/acsnano.9b04250
Y. Wang, V.H. Crespi, Nano Lett. 17 (2017) 5297-5303.
doi: 10.1021/acs.nanolett.7b01641
J.S. Du, D. Shin, T.K. Stanev, et al., Sci. Adv. 6 (2020) eabc4959.
doi: 10.1126/sciadv.abc4959
Z. Bi, F. Lenrick, J. Colvin, et al., Nano Lett. 19 (2019) 2832-2839.
doi: 10.1021/acs.nanolett.8b04781
L.K. Tan, H. Gao, Y. Zong, et al., J. Phys. Chem. C 112 (2008) 17576-17580.
doi: 10.1021/jp8070794
B. Liu, Q. Liao, X. Zhang, et al., ACS Nano 13 (2019) 9057-9066.
doi: 10.1021/acsnano.9b03239
H. Tomori, A. Kanda, H. Goto, et al., Appl. Phys. Express 4 (2011) 075102.
doi: 10.1143/APEX.4.075102
J.C. Hulteen, R.P. Van Duyne, J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
doi: 10.1116/1.579726
J.H. Lee, W.S. Jang, S.W. Han, et al., Langmuir 30 (2014) 9866-9873.
doi: 10.1021/la501349k
P. Zhang, D. Yang, Z. Li, et al., Soft Matter 6 (2010) 4580-4584.
doi: 10.1039/c0sm00298d
Q.H. Thi, L.W. Wong, H. Liu, et al., Nano Lett. 20 (2020) 8420-8425.
doi: 10.1021/acs.nanolett.0c03819
X. Liu, A.K. Sachan, S.T. Howell, et al., Nano Lett. 20 (2020) 8250-8257.
doi: 10.1021/acs.nanolett.0c03358
H. Yu, M. Liao, W. Zhao, et al., ACS Nano 11 (2017) 12001-12007.
doi: 10.1021/acsnano.7b03819
Y. Wang, C. Wang, S.J. Liang, et al., Adv. Mater. 32 (2020) 2004533.
doi: 10.1002/adma.202004533
Y. Tan, P. Liu, L. Chen, et al., Adv. Mater. 26 (2014) 8023-8028.
doi: 10.1002/adma.201403808
H.H. Wu, H. Huang, J. Zhong, et al., Nanoscale 11 (2019) 12210-12219.
doi: 10.1039/c9nr03255j
A. Steinhoff, M. Rösner, F. Jahnke, et al., Nano Lett. 14 (2014) 3743-3748.
doi: 10.1021/nl500595u
C. Carmesin, M. Lorke, M. Florian, et al., Nano Lett. 19 (2019) 3182-3186.
doi: 10.1021/acs.nanolett.9b00641
A. Srivastava, M. Sidler, A.V. Allain, et al., Nat. Nanotechnol. 10 (2015) 491-496.
doi: 10.1038/nnano.2015.60
M. Koperski, K. Nogajewski, A. Arora, et al., Nat. Nanotechnol. 10 (2015) 503-506.
doi: 10.1038/nnano.2015.67
Y. -M. He, G. Clark, J.R. Schaibley, et al., Nat. Nanotechnol. 10 (2015) 497-502.
doi: 10.1038/nnano.2015.75
C. Chakraborty, L. Kinnischtzke, K.M. Goodfellow, et al., Nat. Nanotechnol. 10 (2015) 507-511.
doi: 10.1038/nnano.2015.79
S. Kumar, A. Kaczmarczyk, B.D. Gerardot, Nano Lett. 15 (2015) 7567-7573.
doi: 10.1021/acs.nanolett.5b03312
P. Tonndorf, R. Schmidt, R. Schneider, et al., Optica 2 (2015) 347-352.
doi: 10.1364/OPTICA.2.000347
Y. Luo, G.D. Shepard, J.V. Ardelean, et al., Nat. Nanotechnol. 13 (2018) 1137-1142.
doi: 10.1038/s41565-018-0275-z
A.G. Milekhin, M. Rahaman, E.E. Rodyakina, et al., Nanoscale 10 (2018) 2755-2763.
doi: 10.1039/c7nr06640f
P. Hou, Y. Lv, Y. Chen, et al., ACS Appl. Electron. Mater. 2 (2020) 140-146.
doi: 10.1021/acsaelm.9b00658
C. Cho, P. Kang, A. Taqieddin, et al., Nat. Electron. 4 (2021) 126-133.
doi: 10.1038/s41928-021-00538-4
J. Kim, Y. Lee, M. Kang, et al., Adv. Mater. (2021) 2005858.
doi: 10.1002/adma.202005858
K. Kanahashi, J. Pu, T. Takenobu, Adv. Energy Mater. 10 (2020) 1902842.
doi: 10.1002/aenm.201902842
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Zhichao Zhou , Fuqian Chen , Xiaotong Xia , Dong Ye , Rong Zhou , Lei Li , Tao Deng , Zhenhua Ding , Fang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970
Chunhui Zhang , Jie Wang , Jieyang Zhan , Runmin Yang , Guanggang Gao , Jiayuan Zhang , Linlin Fan , Mengqi Wang , Hong Liu . Highly sensitive hydrazine detection through a novel Raman scattering quenching mechanism enabled by a crystalline and noble metal–free polyoxometalate substrate. Chinese Chemical Letters, 2025, 36(3): 109719-. doi: 10.1016/j.cclet.2024.109719
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Weihong Ding , Kaiyue Song , Xianglong Li , Xiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495
Yuanpeng Ye , Longfei Yao , Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Yajie Yang , Mengde Zhai , Haoxin Wang , Cheng Chen , Ziyang Xia , Chengyang Liu , Yi Tian , Ming Cheng . Molecular engineering of dibenzo-heterocyclic core based hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2025, 36(5): 110700-. doi: 10.1016/j.cclet.2024.110700
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
Jie Wu , Xiaoqing Yu , Guoxing Li , Su Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Lizhang Chen , Yu Fang , Mingxin Pang , Ruoxu Sun , Lin Xu , Qixing Zhou , Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Jing Zhang , Charles Wang , Yaoyao Zhang , Haining Xia , Yujuan Wang , Kun Ma , Junfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420