Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage
-
* Corresponding author.
E-mail address: chexsl@sdu.edu.cn (S. Xiong).
Citation:
Yanting Chu, Shenglin Xiong. Mixed transition-metal oxides@carbon core-shell nanostructures derived from heterometallic clusters for enhanced lithium storage[J]. Chinese Chemical Letters,
;2022, 33(1): 486-490.
doi:
10.1016/j.cclet.2021.06.074
T. He, J. Feng, Y. Zhang, et al., Adv. Energy Mater. 8 (2018) 1702805.
doi: 10.1002/aenm.201702805
Y. Chiang, Science 330 (2010) 1485–1486.
doi: 10.1126/science.1198591
T. He, J. Feng, J. Ru, et al., ACS Nano 13 (2019) 830–838.
doi: 10.1021/acsnano.8b08344
P. Simon, Y. Gogotsi, Nat. Mater. 7 (2008) 845–854.
doi: 10.1038/nmat2297
C. Lee, S.D. Seo, D. Kim, et al., Nano Res. 6 (2013) 348–355.
doi: 10.1007/s12274-013-0311-0
C. Morales-Guio, S. Tilley, H. Vrubel, et al., Nat. Commun. 5 (2014) 3059.
doi: 10.1038/ncomms4059
C. Hao, T. Gao, A. Yuan, et al., Chin. Chem. Lett. 32 (2021) 113–118.
doi: 10.1016/j.cclet.2020.11.038
Y. Li, Y. Xu, W. Yang, et al., Small 14 (2018) 1704435.
doi: 10.1002/smll.201704435
Y. Li, X. Han, T. Yi, et al., J. Energy Chem. 31 (2019) 54–78.
doi: 10.1016/j.jechem.2018.05.010
L. Zhang, T. Wei, Z. Jiang, et al., Nano Energy 48 (2018) 238–247.
doi: 10.1007/s12011-017-1106-z
G. Zeng, N. Shi, M. Hess, et al., ACS Nano 9 (2015) 4227–4235.
doi: 10.1021/acsnano.5b00576
K. Wu, D. Liu, Y. Tang, et al., Electrochim. Acta 263 (2018) 515–23.
doi: 10.1016/j.electacta.2018.01.047
Z. Zhang, Y. Wang, M. Zhang, et al., J. Mater. Chem. A 1 (2013) 7444–7450.
doi: 10.1039/c3ta10762k
M. Lu, H. Li, W. Han, et al., Nanoscale 11 (2019) 15037–15042.
doi: 10.1039/c9nr02103e
H. Tong, C. Wang, J. Lu, et al., Small 16 (2020) 2002771.
doi: 10.1002/smll.202002771
G. Ma, C. Li, F. Liu, et al., Mater. Today Energy 10 (2018) 241–248,.
doi: 10.1016/j.mtener.2018.09.013
T. Shimizu, H. Wang, D. Matsumura, et al., ChemSusChem 13 (2020) 2256–2263.
doi: 10.1002/cssc.201903471
S. Tao, P. Cui, S. Cong, et al., Sci. China Mater. 2020, 63, 1672–1682.
doi: 10.1007/s40843-020-1328-y
M. Huang, K. Mi, J. Zhang, et al., J. Mater. Chem. A 5 (2017) 266–274.
doi: 10.1039/C6TA09030C
X. Cao, B. Zheng, W. Shi, et al., Adv. Mater. 27 (2015) 4695–4701.
doi: 10.1002/adma.201501310
Y. Chen, L. Yu, X.W. Lou, Angew. Chem. Int. Ed. 55 (2016) 5990–5993.
doi: 10.1002/anie.201600133
R. Wu, D. Wang, X. Rui, et al., Adv. Mater. 27 (2015) 3038–3044.
doi: 10.1002/adma.201500783
F. Cao, M. Zhao, Y. Yu, et al., J. Am. Chem. Soc. 138 (2016) 6924–6927.
doi: 10.1021/jacs.6b02540
Y. Cai, G. Fang, J. Zhou, et al., Nano Res. 11 (2018) 449–463.
doi: 10.1007/s12274-017-1653-9
A. Tayi, A. Shveyd, A. Sue, Nature 488 (2012) 485–489.
doi: 10.1038/nature11395
S. Wang, S. Jin, S. Yang, et al., Sci. Adv. 1 (2015) e1500441.
doi: 10.1126/sciadv.1500441
Jia, J. Wang, Q.J. Am. Chem. Soc. 131 (2009) 16634–16635.
doi: 10.1021/ja906695h
H. Yang, Y. Wang, H. Huang, et al., Nat. Commun. 4 (2013) 2422.
doi: 10.1038/ncomms3422
H. Jang, K. Kaji, M. Sorai, et al., Inorg. Chem. 29 (1990) 3547–3556.
doi: 10.1021/ic00343a050
P. Lu, Y. Sun, H. Xiang, et al., Adv. Energy Mater. 8 (2018) 1702434.
doi: 10.1002/aenm.201702434
K. Wang, Z. Lu, Y. Li, et al., ChemSusChem 13 (2020) 5539–5548.
doi: 10.1002/cssc.202001619
H. Wang, Z. Cui, C. Fan, et al., Chem. Eur. J. 24 (2018) 6798–6803.
doi: 10.1002/chem.201800217
J. He, Y. Chen, P. Li, Electrochim. Acta 182 (2015) 424–429.
doi: 10.1016/j.electacta.2015.09.131
M. Zhang, X. Yang, X. Kan, et al., Electrochim Acta 112 (2013) 727–734.
doi: 10.1016/j.electacta.2013.09.034
X. Sun, X. Zhu, X. Yang, et al., Green Energy Environ. 2 (2017) 160–167.
doi: 10.1016/j.gee.2017.01.008
L. Yao, H. Deng, Q. Huang, et al., J. Alloy. Compd. 693 (2017) 929–935.
doi: 10.1016/j.jallcom.2016.09.148
W. Shi, J. Zhu, X. Rui, et al., ACS Appl. Mater. Interfaces 4 (2012) 2999–3006.
doi: 10.1021/am3003654
Q. Peng, S. Zhang, H. Yang, et al., ACS Nano 14 (2020) 6024–6033.
doi: 10.1021/acsnano.0c01681
N. Wang, H. Xu, L. Chen, et al., J. Power Sources 247 (2014) 163–169.
doi: 10.1016/j.jpowsour.2013.08.109
X. Zhao, Y. Wu, Y. Wang, et al., Nano Res. 13 (2020) 1044–1052.
doi: 10.1007/s12274-020-2741-9
Y. Chu, B. Xi, S. Xiong, Chin. Chem. Lett. 32 (2021) 1983–1987.
doi: 10.1016/j.cclet.2020.10.024
Z. Zheng, H. Wu, H. Liu, et al., ACS Nano 14 (2020) 9545–9561.
doi: 10.1021/acsnano.9b08575
J. Tang, X. Huang, T. Lin, et al., Energy Storage Mater. 26 (2020) 550–559.
doi: 10.1016/j.ensm.2019.11.028
S. Kim, M. Kim, S. Choi, et al., Energy Environ. Sci. 8 (2015) 1538–1543.
doi: 10.1039/C5EE00472A
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
Caili Yang , Tao Long , Ruotong Li , Chunyang Wu , Yuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Zhanheng Yan , Weiqing Su , Weiwei Xu , Qianhui Mao , Lisha Xue , Huanxin Li , Wuhua Liu , Xiu Li , Qiuhui Zhang . Carbon-based quantum dots/nanodots materials for potassium ion storage. Chinese Chemical Letters, 2025, 36(4): 110217-. doi: 10.1016/j.cclet.2024.110217
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Kailong Zhang , Chao Zhang , Luanhui Wu , Qidong Yang , Jiadong Zhang , Guang Hu , Liang Song , Gaoran Li , Wenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567