Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions
-
* Corresponding author.
E-mail address: wanqian@hust.edu.cn (Q. Wan).
Citation:
Jing Fang, Ting Li, Xiang Ma, Jiuchang Sun, Lei Cai, Qi Chen, Zhiwen Liao, Lingkui Meng, Jing Zeng, Qian Wan. Discriminating non-ylidic carbon-sulfur bond cleavages of sulfonium ylides for alkylation and arylation reactions[J]. Chinese Chemical Letters,
;2022, 33(1): 288-292.
doi:
10.1016/j.cclet.2021.06.069
D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev.119 (2019) 8701–8780.
doi: 10.1021/acs.chemrev.9b00111
B.M. Trost, L.S. Melvin, Sulfur Ylides Emerging Synthetic Intermidiates, Academic Press, New York, 1975.
J.S. Clark, Nitrogen, Oxygen, and Sulfur Ylide Chemistry (Practical Approach in Chemistry Series), Oxford University Press, New York, 2002.
L.Q. Lu, T.R. Li, Q. Wang, W.J. Xiao, Chem. Soc. Rev. 46 (2017) 4135–4149.
doi: 10.1039/C6CS00276E
V.K. Aggarwal, C.L. Winn, Acc. Chem. Res. 37 (2004) 611–620.
doi: 10.1021/ar030045f
K.J. Hock, R.M. Koenigs, Angew. Chem. Int. Ed. 56 (2017) 13566–13568.
doi: 10.1002/anie.201707092
Y. Zhang, J. Wang, Coord. Chem. Rev. 254 (2010) 941–953.
doi: 10.1016/j.ccr.2009.12.005
J.D. Neuhaus, R. Oost, J. Merad, N. Maulide, Top. Curr. Chem. 376 (2018) 15.
doi: 10.1007/s41061-018-0193-4
R. Fan, C. Tan, Y. Liu, et al., Chin. Chem. Lett. 32 (2021) 299–312.
doi: 10.1016/j.cclet.2020.06.003
R. Oost, J.D. Neuhaus, J. Merad, N. Maulide, Sulfur ylides in organic synthesis and transition metal catalysis, In: V. Gessner (Ed.), Modern Ylide Chemistry: Structure and Bonding, Vol. 177, Springer, Cham, 2017, pp. 73-166. .
T. Fujisawa, T. Kojima, K. Hata, JPS4891039A, 1973. .
N. Furukawa, T. Masuda, M. Yakushiji, S. Oae, Bull. Chem. Soc. Jpn. 47 (1974) 2247.
doi: 10.1246/bcsj.47.2247
X. Huang, R. Goddard, N. Maulide, Chem. Commun. 49 (2003) 4292–4294.
doi: 10.1039/C2CC35762C
Y.Y. Liu, X.H. Yang, X.C. Huang, et al., J. Org. Chem. 78 (2013) 10421–10426.
doi: 10.1021/jo401851m
Y. Liu, X. Shao, P. Zhang, L. Lu, Q. Shen, Org. Lett. 17 (2015) 2752–2755.
doi: 10.1021/acs.orglett.5b01170
J. Zhu, Y. Liu, Q. Shen, Angew. Chem. Int. Ed. 55 (2016) 9050–9054.
doi: 10.1002/anie.201603166
Y. Liu, L. Lu, Q. Shen, Angew. Chem. Int. Ed. 56 (2017) 9930–9934.
doi: 10.1002/anie.201704175
J. Zhu, H. Zheng, X. Xue, et al., Chin. J. Chem. 36 (2018) 1069–1074.
doi: 10.1002/cjoc.201800383
Y. Liu, H. Ge, L. Lu, Q. Shen, Chin. J. Org. Chem. 39 (2019) 257–264.
doi: 10.6023/cjoc201807018
X. Hong, Y. Liu, L. Lu, Q. ShenChin. J. Chem. 38 (2020) 1317–1331.
doi: 10.1002/cjoc.202000206
L. Meng, P. Wu, J. Fang, et al., J. Am. Chem. Soc. 141 (2019) 11775–11780.
doi: 10.1021/jacs.9b04619
M. Yar, E.M. McGarrigle, V.K. Aggarwal, Angew. Chem. Int. Ed. 47 (2008) 3784–3786.
doi: 10.1002/anie.200800373
S.L. Riches, C. Saha, N.F. Filgueira, et al., J. Am. Chem. Soc. 132 (2010, 7626–7630.
doi: 10.1021/ja910631u
J. An, N.J. Chang, L.D. Song, Y.Q. Jin, et al., Chem. Commun. 47 (2011) 1869–1871.
doi: 10.1039/C0CC03823G
P.G.M. Wuts, Greene's Protective Groups in Organic Synthesis, 5th. Ed., John Wiley & Sons, Hoboken, 2014.
T.W. Greene, P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd. Ed., John Wiley & Sons, New York, 1999.
T. Iversen, D.R.J. Bundle, Chem. Soc. Chem. Commun. (1981) 1240–1241.
K.W.C. Poon, S.E. House, G.B. Dudley, Synlett (2005) 3142–3144.
T. Wang, T. Intaranukulkit, M.R. Rosana, et al., Org. Biomol. Chem. 10 (2012), 248–250.
doi: 10.1039/C1OB06504A
N. Asao, H. Aikawa, S. Tago, K. Umetsu, Org. Lett. 9 (2007) 4299–4302.
doi: 10.1021/ol701861d
K. Yamada, H. Fujita, M. Kunishima, Org. Lett. 14 (2012) 5026–5029.
doi: 10.1021/ol302222p
K. Yamada, Y. Tsukada, Y. Karuo, M. Kitamura, M. Kunishima, Chem. Eur. J. 20 (2014) 12274–12278.
doi: 10.1002/chem.201403158
H. Fujita, S. Kakuyama, M. Kunishima, Eur. J. Org. Chem. 2017 (2017) 833–839.
doi: 10.1002/ejoc.201601387
J.R. Zhao, X. Yuan, Z. Wang, et al., Org. Chem. Front. 2 (2015) 34–37.
doi: 10.1039/C4QO00255E
S. Chakraborty, B. Mishra, M. Neralkar, S.J. Hotha, J. Org. Chem. 84 (2019) 6604–6611.
doi: 10.1021/acs.joc.9b00016
T. Henkel, R.M. Brunne, H. Müller, F. Reichel, Angew. Chem. Int. Ed. 38 (1999) 643-467.
doi: 10.1002/(SICI)1521-3773(19990301)38:5<643::AID-ANIE643>3.0.CO;2-G
T. Naito, Chem. Pharm. Bull. 56 (2008) 1367–1383.
doi: 10.1248/cpb.56.1367
J.F. Hartwig, Acc. Chem. Res. 41 (2008) 1534–1544.
doi: 10.1021/ar800098p
R.N. Salvatore, C.H. Yoon, K.W. Jung, Tetrahedron57 (2001) 7785–7811.
doi: 10.1016/S0040-4020(01)00722-0
N. D'Alessandro, A. Albini, P.S. Mariano, J. Org. Chem. 58 (1993) 937–942.
doi: 10.1021/jo00056a029
X. Si, L. Zhang, Z. Wu, et al., Org. Lett. 22 (2020) 5844–5849.
doi: 10.1021/acs.orglett.0c01924
B. Yu, Acc. Chem. Res. 51 (2018) 507–516.
doi: 10.1021/acs.accounts.7b00573
P. Li, H. He, L. Xu, et al., Green Synth. Catal. 1 (2020) 160–166.
doi: 10.1016/j.gresc.2020.10.003
A. Zapf, M. Beller, T.H. Riermeier. Transition Metal-Catalyzed Arylation of Amines and Alcohols, in: M. Beller, C. Bolm (Eds.), Transition metals for organic synthesis-building blocks and fine chemicals (2nd ed.), Wiley, 2004, Vol. 1, pp. 231–256.
Q. Cai, W. Zhou, Chin. J. Chem. 38 (2020) 879–893.
doi: 10.1002/cjoc.202000075
S.M. Roopan, J. Palaniraja, Res. Chem. Intermed. 41 (2015) 8111–8146.
doi: 10.1007/s11164-014-1880-6
W. Liu, J. Li, C.Y. Huang, C.J. Li, Angew. Chem. Int. Ed. 59 (2020) 1786–1796.
doi: 10.1002/anie.201909138
V. Dimakos, M.S. Taylor, Org. Biomol. Chem. 19 (2021) 514–524.
doi: 10.1039/d0ob02009e
A.S. Henderson, S. Medina, J.F. Bower, M.C. Galan, Org. Lett. 17 (2015) 4846–4849.
doi: 10.1021/acs.orglett.5b02413
J.A. Terrett, J.D. Cuthbertson, V.W. Shurtleff, D.W.C. MacMillan, Nature524 (2015) 330–334.
doi: 10.1038/nature14875
X. Shen, C.N. Neumann, C. Kleinlein, N.W. Goldberg, T. Ritter, Angew. Chem. Int. Ed. 54 (2015) 5662–5665.
doi: 10.1002/anie.201500902
W. Shang, Z.D. Mou, H. Tang, et al., Angew. Chem. Int. Ed. 57 (2018), 314–318.
doi: 10.1002/anie.201710310
W. Liu, J. Li, P. Querard, C.J. Li, J. Am. Chem. Soc. 141 (2019), 6755–6764.
doi: 10.1021/jacs.9b02684
G.L. Tolnai, U.J. Nilsson, B. Olofsson, Angew. Chem. Int. Ed. 55 (2016) 11226–11230.
doi: 10.1002/anie.201605999
K. LeM Hoang, X. Liu, Nat. Commun. 5 (2014), 5051.
doi: 10.1038/ncomms6051
R.W. Balsiger, Th. Leuenberger, W. Michaelis, O. Schindler, HeIv. Chim. Acta52 (1969) 1323–1336.
doi: 10.1002/hlca.19690520515
R. Ghosh, E. Lindstedt, N. Jalalian, B. Olofsson, ChemistryOpen3 (2014) 54–57.
doi: 10.1002/open.201402006
A. Kumar, D.H. Ner, S.Y. Dike, Tetrahedron. Lett. 32 (1991) 1901–1904.
doi: 10.1016/S0040-4039(00)85993-6
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
Haoran Shi , Jiaxin Wang , Yuqin Zhu , Hongyang Li , Guodong Ju , Lanlan Zhang , Chao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333
Zhilian Liu , Wengui Wang , Hongxiao Yang , Yu Cui , Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012
Zhenkang Ai , Hui Chen , Xuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Guoju Guo , Xufeng Li , Jie Ma , Yongjia Shi , Jian Lv , Daoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yi Luo , Lin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002