Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances
-
* Corresponding author.
E-mail address: jiangjinhit@126.com(J. Jiang).
Citation:
Ning Li, Jin Jiang, Yanbin Xu, Hanping Pan, Xiaonan Luo, Yingbin Hu, Jie Cao. Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances[J]. Chinese Chemical Letters,
;2022, 33(1): 71-79.
doi:
10.1016/j.cclet.2021.06.064
J. Qu, H. Wang, K. Wang, et al., Front. Environ. Sci. Eng. 13(2019) 88.
doi: 10.1007/s11783-019-1172-x
T. Kiran Marella, A. Saxena, A. Tiwari, Bioresour. Technol. 305(2020) 123068.
doi: 10.1016/j.biortech.2020.123068
M. Kamali, S.A. Alavi-Borazjani, Z. Khodaparast, et al., Water Resour. Ind. 21(2019) 100109.
doi: 10.1016/j.wri.2019.100109
K. Watanabe, M. Manefield, M. Lee, A. Kouzuma, Curr. Opin. Biotechnol. 20(2009) 633-641.
doi: 10.1016/j.copbio.2009.09.006
M. Ruiz-Urigüen, D. Steingart, P.R. Jaffé, Environ. Sci. Water Res. Technol. 5(2019) 1582-1592.
doi: 10.1039/C9EW00366E
Y. Zhu, M. Wu, N. Gao, et al., Chem. Eng. J. 357(2019) 75-83.
doi: 10.1016/j.cej.2018.09.061
X. Liu, L. Shi, J.D. Gu, Biotechnol. Adv. 36(2018) 1815-1827.
doi: 10.1016/j.biotechadv.2018.07.001
B. Huang, S. Gao, Z. Xu, H. He, X. Pan, Curr. Microbiol. 75(2018) 99-106.
doi: 10.1007/s00284-017-1386-8
L. Shi, H. Dong, G. Reguera, et al., Nat. Rev. Microbiol. 14(2016) 651-662.
doi: 10.1038/nrmicro.2016.93
F.P. Van der Zee, F.J. Cervantes, Biotechnol. Adv. 27(2009) 256-277.
doi: 10.1016/j.biotechadv.2009.01.004
L.A. Fitzgerald, E.R. Petersen, R.I. Ray, et al., Process Biochem. 47(2012) 170-174.
doi: 10.1016/j.procbio.2011.10.029
M.A. Thirumurthy, A.K. Jones, Nanotechnology 31(2020) 124001.
doi: 10.1088/1361-6528/ab5de6
H. Chen, F. Dong, S.D. Minteer, Nat. Catal. 3(2020) 225-244.
doi: 10.1038/s41929-019-0408-2
Z. Gong, H. Yu, J. Zhang, F. Li, H. Song, Synth. Syst. Biotechnol. 5(2020) 304-313.
doi: 10.1016/j.synbio.2020.08.004
F.J. Cervantes, A. Garcia-Espinosa, M.A. Moreno-Reynosa, J.R. Rangel-Mendez, Environ. Sci. Technol. 44(2010) 1747-1753.
doi: 10.1021/es9027919
R. llamathi, A.M. Sheela, N.N. Gandhi, Int. Biodeterior. Biodegrad. 144(2019) 104744.
doi: 10.1016/j.ibiod.2019.104744
L. Yu, P.T. Wang, Q.T. Xu, et al., Bioresour. Technol. 288(2019) 121535.
doi: 10.1016/j.biortech.2019.121535
R. Gurav, S.K. Bhatia, T.R. Choi, et al., Chemosphere 264(2021) 128539.
doi: 10.1016/j.chemosphere.2020.128539
J. Tang, Y. Wang, G. Yang, et al., J. Biotechnol. 284(2018) 6-10.
doi: 10.1016/j.jbiotec.2018.07.032
R. Dai, X. Chen, X. Xiang, Y. Wang, F. Wang, Bioresour. Technol. 249(2018) 799-808.
doi: 10.1016/j.biortech.2017.10.072
W. Liu, L. Liu, C. Liu, et al., Biochem. Eng. J. 110(2016) 115-124.
doi: 10.1016/j.bej.2016.02.012
F.P. Van Der Zee, I.A.E. Bisschops, G. Lettinga, J.A. Field, Environ. Sci. Technol. 37(2003) 402-408.
doi: 10.1021/es025885o
C. He, L. Wei, F. Lai, et al., RSC Adv. 9(2019) 41351-41360.
doi: 10.1039/C9RA05525H
N. Zhang, D.D. Zhang, H. Da Ji, et al., Front. Microbiol. 9(2018) 1-11.
doi: 10.3389/fmicb.2018.00001
P. Guo, C. Zhang, Y. Wang, et al., Environ. Pollut. 234(2018) 107-114.
doi: 10.1016/j.envpol.2017.10.106
R. Jia, D. Yang, D. Xu, T. Gu, Bioelectrochemistry 118(2017) 38-46.
doi: 10.1016/j.bioelechem.2017.06.013
Z. Wang, W. Fu, L. Hu, et al., Sci. Total Environ. 781(2021) 146686.
doi: 10.1016/j.scitotenv.2021.146686
Z. Wu, F. Xu, C. Yang, et al., Bioresour. Technol. 275(2019) 297-306.
doi: 10.1016/j.biortech.2018.12.058
D. Xie, H. Yu, C. Li, et al., Electrochim. Acta 133(2014) 217-223.
doi: 10.1016/j.electacta.2014.04.016
X. Zhao, W. Tan, J. Peng, et al., Environ. Int. 135(2020) 105380.
doi: 10.1016/j.envint.2019.105380
X. Xiao, B.D. Xi, X.S. He, et al., Environ. Pollut. 253(2019) 488-496.
doi: 10.1016/j.envpol.2019.07.044
J. Chen, C. Wang, Y. Pan, S.S. Farzana, N.F.Y. Tam, J. Hazard. Mater. 341(2018) 177-186.
doi: 10.1016/j.jhazmat.2017.07.063
H. Chen, R. Jin, G. Liu, et al., Environ. Sci. Pollut. Res. 26(2019) 5065-5075.
doi: 10.1007/s11356-018-3917-7
S. Lee, D.H. Kim, K.W. Kim, Chemosphere 194(2018) 515-522.
doi: 10.1016/j.chemosphere.2017.12.007
A. Ramos-Ruiz, J.A. Field, J.V. Wilkening, R. Sierra-Alvarez, Environ. Sci. Technol. 50(2016) 1492-1500.
doi: 10.1021/acs.est.5b04074
Z. Chen, J. Zhang, K. Han, et al., RSC Adv. 7(2017) 31075-31084.
doi: 10.1039/C7RA05393B
B. Ahmed, B. Cao, J.S. McLean, et al., Appl. Environ. Microbiol. 78(2012) 8001-8009.
doi: 10.1128/AEM.01844-12
A.M. Pat-Espadas, E. Razo-Flores, J.R. Rangel-Mendez, F.J. Cervantes, Appl. Microbiol. Biotechnol. 97(2013) 9553-9560.
doi: 10.1007/s00253-012-4640-9
C. Wu, W. An, Z. Liu, et al., J. Hazard. Mater. 390(2020) 121391.
doi: 10.1016/j.jhazmat.2019.121391
H. Yu, G. Liu, R. Jin, J. Wang, J. Zhou, ACS Earth Space Chem. 3(2019) 1594-1602.
doi: 10.1021/acsearthspacechem.9b00093
M.M. Atilano-Camino, C.D. Luévano-Montaño, A. García-González, et al., Bioresour. Technol. 317(2020) 123981.
doi: 10.1016/j.biortech.2020.123981
J.P. García-Rodríguez, H.J. Amezquita-Garcia, C. Escamilla-Alvarado, J.R. Rangel-Mendez, K. Gutiérrez-García, Biodegradation 30(2019) 401-413.
doi: 10.1007/s10532-019-09880-z
H.Y. Yuan, L.J. Ding, E.F. Zama, et al., Environ. Sci. Technol. 52(2018) 12198-12207.
doi: 10.1021/acs.est.8b04121
M. Zhou, C. Li, L. Zhao, et al., Sci. Total Environ. 752(2021) 142261.
doi: 10.1016/j.scitotenv.2020.142261
Z. Peng, M. Shi, K. Xia, Y. Dong, L. Shi, Environ. Pollut. 266(2020) 115413.
doi: 10.1016/j.envpol.2020.115413
L.N. Nguyen, F.I. Hai, W.E. Price, et al., Bioresour. Technol. 167(2014) 169-177.
doi: 10.1016/j.biortech.2014.05.125
Y.D. Chen, F. Liu, N.Q. Ren, S.H. Ho, Chin. Chem. Lett. 31(2020) 2591-2602.
doi: 10.1016/j.cclet.2020.08.019
K.M. Horax, S. Bao, M. Wang, Y. Li, Chin. Chem. Lett. 28(2017) 2290-2294.
doi: 10.1016/j.cclet.2017.11.004
M.D.F. Hossain, N. Akther, Y. Zhou, Chin. Chem. Lett. 31(2020) 2525-2538.
doi: 10.1016/j.cclet.2020.05.011
N. Yu, B. Guo, Y. Zhang, et al., Chem. Eng. J. (2020) 127652.
Q. Li, X. Gao, Y. Liu, et al., J. Hazard. Mater. 405(2021) 124183.
doi: 10.1016/j.jhazmat.2020.124183
C. Nie, Z. Dai, H. Meng, et al., Water Res. 166(2019) 115043.
doi: 10.1016/j.watres.2019.115043
J. Peng, Y. He, C. Zhou, S. Su, B. Lai, Chin. Chem. Lett. 32(2021) 1626-1636.
doi: 10.1016/j.cclet.2020.10.026
A. Colunga, J.R. Rangel-Mendez, L.B. Celis, F.J. Cervantes, Bioresour. Technol. 175(2015) 309-314.
doi: 10.1016/j.biortech.2014.10.101
C. Zhang, S. Chen, P.J.J. Alvarez, W. Chen, Carbon 94(2015) 531-538.
doi: 10.1016/j.carbon.2015.07.036
Q. Guan, Y. Zhang, Y. Tao, C.T. Chang, W. Cao, Geoderma 352(2019) 181-184.
doi: 10.1016/j.geoderma.2019.05.044
L. Xiao, S. Zheng, E. Lichtfouse, et al., Soil Biol. Biochem. 150(2020) 107938.
doi: 10.1016/j.soilbio.2020.107938
L. Pereira, P. Dias, O.S.G.P. Soares, et al., Appl. Catal. B 212(2017) 175-184.
doi: 10.1016/j.apcatb.2017.04.060
H.J. Amezquita-Garcia, J.R. Rangel-Mendez, F.J. Cervantes, E. Razo-Flores, Chem. Eng. J. 286(2016) 208-215.
doi: 10.1016/j.cej.2015.10.085
D. Castañon, L.H. Alvarez, K. Peña, et al., Environ. Pollut. 252(2019) 1163-1169.
doi: 10.1016/j.envpol.2019.06.050
C. He, L. Gu, H. He, et al., Environ. Sci. Water Res. Technol. 6(2020) 1804-1815.
doi: 10.1039/C9EW00965E
Z. Yang, T. Sun, E. Subdiaga, et al., Sci. Total Environ. 703(2020) 135515.
doi: 10.1016/j.scitotenv.2019.135515
Y. Shen, Y. Yu, Y. Zhang, et al., J. Clean. Prod. 278(2021) 123212.
doi: 10.1016/j.jclepro.2020.123212
G. Wang, X. Gao, Q. Li, et al., J. Hazard. Mater. 390(2020) 1-9.
Z. Xu, X. Xu, X. Tao, et al., J. Hazard. Mater. 378(2019) 120705.
doi: 10.1016/j.jhazmat.2019.05.098
S.Y. Rodriguez, M.E. Cantú, B. Garcia-Reyes, et al., Chemosphere 221(2019) 219-225.
doi: 10.1016/j.chemosphere.2019.01.041
M. Ali, Q. Husain, S. Sultana, M. Ahmad, Chemosphere 202(2018) 198-207.
doi: 10.1016/j.chemosphere.2018.03.073
F.J. Cervantes, J. Gonzalez-Estrella, A. Márquez, L.H. Alvarez, S. Arriaga, Bioresour. Technol. 102(2011) 2097-2100.
doi: 10.1016/j.biortech.2010.08.021
H. Lu, J. Wang, S. Lu, et al., Appl. Biochem. Biotechnol. 175(2015) 2574-2588.
doi: 10.1007/s12010-014-1452-7
T. Liu, Y. Wang, C. Liu, et al., Environ. Sci. Technol. 54(2020) 4810-4819.
doi: 10.1021/acs.est.9b06141
Y. Wu, T. Liu, X. Li, F. Li, Environ. Sci. Technol. 48(2014) 9306-9314.
doi: 10.1021/es5017312
D. Xin, M. Xian, P.C. Chiu, Chemosphere 215(2019) 827-834.
doi: 10.1016/j.chemosphere.2018.10.080
E. González, L. Hernández, J. Á. Muñoz, et al., Hydrometallurgy 194(2020) 105351.
doi: 10.1016/j.hydromet.2020.105351
S. Xu, D. Adhikari, R. Huang, et al., Environ. Sci. Technol. 50(2016) 2389-2395.
doi: 10.1021/acs.est.5b05517
Y.C. Chen, L.Y. Lin, J. Colloid Interface Sci. 537(2019) 295-305.
doi: 10.1016/j.jcis.2018.11.026
L.V. da Silva, A.K.A. de Almeida, J.A. Xavier, et al., J. Electroanal. Chem. 827(2018) 230-252.
doi: 10.1016/j.jelechem.2018.05.027
S. Orsetti, C. Laskov, S.B. Haderlein, Environ. Sci. Technol. 47(2013) 14161-14168.
doi: 10.1021/es403658g
W. Liu, C. Nie, W. Li, et al., J. Hazard. Mater. 414(2021) 125552.
doi: 10.1016/j.jhazmat.2021.125552
F.J. Chacón, M.A. Sánchez-Monedero, L. Lezama, M.L. Cayuela, Chem. Eng. J. 395(2020) 125100.
doi: 10.1016/j.cej.2020.125100
Z. Zhao, Y. Cao, S. Li, Y. Zhang, Bioresour. Technol. 320(2021) 124295.
doi: 10.1016/j.biortech.2020.124295
Y. Zhang, X. Xu, L. Cao, Y.S. Ok, X. Cao, Chemosphere 211(2018) 1073-1081.
doi: 10.1016/j.chemosphere.2018.08.033
X. Li, L. Liu, T. Liu, et al., Chemosphere 92(2013) 218-224.
doi: 10.1016/j.chemosphere.2013.01.098
A. Prévoteau, F. Ronsse, I. Cid, P. Boeckx, K. Rabaey, Sci. Rep. 6(2016) 1-11.
doi: 10.1038/s41598-016-0001-8
X. Yin, S. Qiao, J. Zhou, Z. Bhatti, Chem. Eng. J. 257(2014) 90-97.
doi: 10.1016/j.cej.2014.07.029
G.W. Zhou, X.R. Yang, C.W. Marshall, et al., Front. Microbiol. 8(2017) 1-14.
C. Nie, Z. Dai, W. Liu, et al., Environ. Sci. Nano. 7(2020) 1899-1911.
doi: 10.1039/D0EN00347F
H.J. Amezquita-Garcia, E. Razo-Flores, F.J. Cervantes, J.R. Rangel-Mendez, Carbon N Y 55(2013) 276-284.
doi: 10.1016/j.carbon.2012.12.062
D.V. Cuong, P.C. Wu, L.I. Chen, C.H. Hou, Water Res. 188(2021) 116495.
doi: 10.1016/j.watres.2020.116495
H. Meng, C. Nie, W. Li, et al., J. Hazard. Mater. 399(2020) 123043.
doi: 10.1016/j.jhazmat.2020.123043
H.W. Lee, H. Lee, Y.M. Kim, R.S. Park, Y.K. Park, Chin. Chem. Lett. 30(2019) 2147-2150.
doi: 10.1016/j.cclet.2019.05.002
M. Wang, Z. Zhao, Y. Zhang, J. Hazard. Mater. 403(2021) 123972.
doi: 10.1016/j.jhazmat.2020.123972
R. Antiochia, D. Oyarzun, J. Sánchez, F. Tasca, Catalysts 9(2019) 7-9.
W. Liu, Y. Wu, T. Liu, et al., Front. Microbiol. 10(2019) 1-10.
doi: 10.3389/fmicb.2019.00001
Z. Wan, Y. Sun, D.C.W. Tsang, et al., Chem. Eng. J. 395(2020) 125138.
doi: 10.1016/j.cej.2020.125138
H. Yuan, Y. Li, X. Zhang, X. Wang, H. Wang, Water Sci. Technol. 79(2019) 1253-1262.
doi: 10.2166/wst.2019.116
H. Yuan, Y. Sun, J. Sun, X. Wang, J. Yuan, Desalin. Water Treat. 81(2017) 80-86.
doi: 10.5004/dwt.2017.21088
R. Zhao, J. Guo, Y. Song, et al., Int. Biodeterior. Biodegrad. 147(2020) 104838.
doi: 10.1016/j.ibiod.2019.104838
Y. Yuan, N. Bolan, A. Prévoteau, et al., Bioresour. Technol. 246(2017) 271-281.
doi: 10.1016/j.biortech.2017.06.154
X. Xu, H. Huang, Y. Zhang, Z. Xu, X. Cao, Environ. Pollut. 244(2019) 423-430.
doi: 10.1016/j.envpol.2018.10.068
J. Xie, J. Wang, J. Lin, X. Zhou, Environ. Pollut. 242(2018) 659-666.
doi: 10.1016/j.envpol.2018.07.021
W. Zheng, T. Cai, M. Huang, D. Chen, J. Biosci. Bioeng. 124(2017) 551-558.
doi: 10.1016/j.jbiosc.2017.05.013
Y. Jin, Z. Li, E. Zhou, et al., Electrochim. Acta 316(2019) 93-104.
doi: 10.1016/j.electacta.2019.05.094
Y. Xu, Y. He, X. Tang, P.C. Brookes, J. Xu, Sci. Total Environ. 596-597(2017) 147-157.
D. Zhang, C. Zhang, Z. Li, et al., Bioresour. Technol. 164(2014) 232-240.
doi: 10.1016/j.biortech.2014.04.071
M. Usman, Z. Shi, S. Ren, et al., Chem. Eng. J. 399(2020) 125766.
doi: 10.1016/j.cej.2020.125766
A. Mostafa, S. Im, Y.C. Song, S. Kang, D.H. Kim, Microorganisms 8(2020) 333.
doi: 10.3390/microorganisms8030333
M. Sun, Z. Zhang, G. Liu, M. Lv, Y. Feng, Sci. Total Environ. 760(2021) 143933.
doi: 10.1016/j.scitotenv.2020.143933
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Yun-Xin Huang , Lin-Qian Yu , Ke-Yu Chen , Hao Wang , Shou-Yan Zhao , Bao-Cheng Huang , Ren-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
Yuhang Li , Yang Ling , Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237
Jiale Zheng , Mei Chen , Huadong Yuan , Jianmin Luo , Yao Wang , Jianwei Nai , Xinyong Tao , Yujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812
Chao Ma , Peng Guo , Zhongmin Liu . DNL-16: A new zeolitic layered silicate unraveled by three-dimensional electron diffraction. Chinese Journal of Structural Chemistry, 2024, 43(4): 100235-100235. doi: 10.1016/j.cjsc.2024.100235
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Wenxiang Ma , Xinyu He , Tianyi Chen , De-Li Ma , Hongzheng Chen , Chang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277