Photo-piezoelectric synergistic degradation of typical volatile organic compounds on BaTiO3
-
* Corresponding author.
E-mail address: zhimin.ao@gdut.edu.cn (Z. Ao).
Citation:
Qin Liu, Weina Zhao, Zhimin Ao, Taicheng An. Photo-piezoelectric synergistic degradation of typical volatile organic compounds on BaTiO3[J]. Chinese Chemical Letters,
;2022, 33(1): 410-414.
doi:
10.1016/j.cclet.2021.06.059
A.G. Carlton, C. Wiedinmyer, J.H. Kroll, Atmos. Chem. Phys.9 (2009) 4987–5005.
doi: 10.5194/acp-9-4987-2009
L.F. Liotta, Appl. Catal. B100 (2010) 403–412.
doi: 10.1016/j.apcatb.2010.08.023
G. Gałęzowska, M. Chraniuk, L. Wolska, Trends Anal. Chem. 77 (2016) 14–22.
doi: 10.1016/j.trac.2015.10.012
Y. Su, Z. Ao, Y. Ji, et al., Appl. Surf. Sci. 450 (2018) 484–491.
doi: 10.1016/j.apsusc.2018.04.157
B. Huang, C. Lei, C. Wei, G. Zeng, Environ. Int. 71 (2014) 118–138.
doi: 10.1016/j.envint.2014.06.013
M.A. Bari, W.B. Kindzierski, Sci. Total Environ. 631-632 (2018) 627–640.
doi: 10.1016/j.scitotenv.2018.03.023
F.J. Varela-Gandía, Á. Berenguer-Murcia, D. Lozano-Castelló, et al., Appl. Catal. B129 (2013) 98–105.
doi: 10.1016/j.apcatb.2012.08.041
W. Li, Q. Jiang, D. Li, et al., Chin. Chem. Lett. (2021), 10.1016/j. cclet. 2021.01.026.
doi: 10.1016/j.cclet.2021.01.026
M.A. Henderson, I. Lyubinetsky, Chem. Rev. 113 (2013) 4428–4455.
doi: 10.1021/cr300315m
W. Zhao, Z. Liu, Chem. Sci. 5 (2014) 2256–2264.
doi: 10.1039/C3SC53385A
B. Jing, Z. Ao, W. Zhao, et al., J. Mater. Chem. A8 (2020) 20363–20372.
doi: 10.1039/d0ta06060g
Y. Tang, H. Zhou, K. Zhang, et al., Chem. Eng. J. 262 (2015) 260–267.
doi: 10.1016/j.cej.2014.09.095
J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013) 16883.
doi: 10.1039/c3cp53131g
X. Zhu, C. Jin, X. Li, et al., ACS Catal. 7 (2017) 6514–6524.
doi: 10.1021/acscatal.7b01658
C. Sheng, C. Wang, H. Wang, et al., J. Hazard. Mater. 328 (2017) 127–139.
doi: 10.1016/j.jhazmat.2017.01.018
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
G. Liu, J. Zhou, W. Zhao, et al., Chin. Chem. Lett. 31 (2020) 1966–1969.
doi: 10.1016/j.cclet.2019.12.023
J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. (2021), 10.1016/j. cclet. 2021.02.046.
doi: 10.1016/j.cclet.2021.02.046
W. Liu, W. Zhang, M. Liu, et al., Chin. Chem. Lett. 30 (2019) 2177–2180.
doi: 10.1016/j.cclet.2019.07.050
Z. Zhang, J.T. Yates, Chem. Rev. 112 (2012) 5520–5551.
doi: 10.1021/cr3000626
J. Shi, P. Yu, F. Liu, et al., Adv. Mater. 29 (2017) 1701486.
doi: 10.1002/adma.201701486
X. Hu, Q. Zhang, S. Yu, Appl. Surf. Sci. 478 (2019) 857–865.
doi: 10.1016/j.apsusc.2019.01.276
H. Yang, C. He, L. Fu, et al., Chin. Chem. Lett. (2021), 10.1016/j. cclet. 2021.03.038.
doi: 10.1016/j.cclet.2021.03.038
H. You, Y. Jia, Z. Wu, et al., Electrochem. Commun. 79 (2017) 55–58.
doi: 10.1016/j.elecom.2017.04.017
L. Wang, S. Liu, Z. Wang, et al., ACS Nano10 (2016) 2636–2643.
doi: 10.1021/acsnano.5b07678
H. Li, Y. Sang, S. Chang, et al., Nano Lett. 15 (2015) 2372–2379.
doi: 10.1021/nl504630j
J. Shi, M.B. Starr, H. Xiang, et al., Nano Lett. 11 (2011) 5587–5593.
doi: 10.1021/nl203729j
K. Hong, H. Xu, H. Konishi, X. Li, J. Phys. Chem. C116 (2012) 13045–13051.
doi: 10.1021/jp211455z
S. Liu, B. Jing, C. Nie, et al., Environ. Sci. : Nano8 (2021) 784–794.
doi: 10.1039/d0en01237h
X. Xue, W. Zang, P. Deng, et al., Nano Energy13 (2015) 414–422.
doi: 10.1016/j.nanoen.2015.02.029
M. Lo, S. Lee, K. Chang, J. Phys. Chem. C119 (2015) 5218–5224.
doi: 10.1021/acs.jpcc.5b00282
D. Hong, W. Zang, X. Guo, et al., ACS Appl. Mater. Interfaces8 (2016) 21302–21314.
doi: 10.1021/acsami.6b05252
J.F. Scott, Integr. Ferroelectr. 20 (1998) 15–23.
doi: 10.1080/10584589808238762
H.P. Maruska, A.K. Ghosh, Sol. Energy Mater. 1 (1979) 237–247.
doi: 10.1016/0165-1633(79)90042-X
Y. Wang, X. Wen, Y. Jia, et al., Nat. Commun. 11 (2020) 1328.
doi: 10.1049/el.2020.2265
J. Wu, N. Qin, D. Bao, Nano Energy45 (2018) 44–51.
doi: 10.1016/j.nanoen.2017.12.034
B. Luo, X. Wang, E. Tian, et al., J. Mater. Chem. C3 (2015) 8625–8633.
doi: 10.1039/C5TC01622C
W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49 (2010) 299–312.
doi: 10.1016/j.commatsci.2010.05.010
R.D. Shannon, Acta Crystallogr., Sect. A32 (1976) 751–767.
doi: 10.1107/S0567739476001551
Q. Wang, K. Domen, Chem. Rev. 120 (2020) 919–985.
doi: 10.1021/acs.chemrev.9b00201
J.B. Neaton, C. Ederer, U.V. Waghmare, et al., Phys. Rev. B71 (2005) 014113.
doi: 10.1103/PhysRevB.71.014113
Z. Liang, C. Yan, S. Rtimi, J. Bandara, Appl. Catal. B241 (2019) 256–269.
doi: 10.1016/j.apcatb.2018.09.028
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Xiao-Ya Yuan , Cong-Cong Wang , Bing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517
Keke Han , Wenjun Rao , Xiuli You , Haina Zhang , Xing Ye , Zhenhong Wei , Hu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4−, ReO4−). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809
Teng Wang , Jiachun Cao , Juan Li , Didi Li , Zhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931