Porphyrin-based heterogeneous photocatalysts for solar energy conversion
-
* Corresponding authors.
E-mail addresses: linwang@upc.edu.cn (L. Wang), fanzhj666@163.com (Z. Fan).
Citation:
Yuheng Zhang, Kang Ren, Lu Wang, Lin Wang, Zhuangjun Fan. Porphyrin-based heterogeneous photocatalysts for solar energy conversion[J]. Chinese Chemical Letters,
;2022, 33(1): 33-60.
doi:
10.1016/j.cclet.2021.06.013
C.B. Kc, F. D'Souza, Coordin. Chem. Rev. 322(2016) 104-141.
doi: 10.1016/j.ccr.2016.05.012
X. Ji, J. Wang, L. Mei, et al., Adv. Funct. Mater. 28(2018) 1705083.
doi: 10.1002/adfm.201705083
X. Ji, J. Wang, Y. Kang, et al., ACS Catal. 8(2018) 10732-10745.
doi: 10.1021/acscatal.8b03105
G. Mukherjee, J. Thote, H.B. Aiyappa, et al., Chem. Commun. 53(2017) 4461-4464.
doi: 10.1039/C7CC00879A
A.M. Huerta-Flores, G. Bengasi, K. Baba, N.D. Boscher, ACS Appl. Energy Mater. 3(2020) 9848-9855.
doi: 10.1021/acsaem.0c01545
K. Liu, C. Yuan, Q. Zou, Z. Xie, X. Yan, Angew. Chem. Int. Ed. 56(2017) 7876-7880.
doi: 10.1002/anie.201704678
R. Wang, C. He, W. Chen, C. Zhao, J. Huo, Chin. Chem. Lett. (2021), doi: 10.1016/j.cclet.2021.05.024.
doi: 10.1016/j.cclet.2021.05.024
Y. Chen, S. Ji, W. Sun, et al., Angew. Chem. Int. Ed. 59(2020) 1295-1301.
doi: 10.1002/anie.201912439
P. Fu, S. Hu, J. Tang, Z. Xiao, Front. Optoelectronics (2021), doi: 10.1007/s12200-021-1227-z.
doi: 10.1007/s12200-021-1227-z
L. Chen, Y. Song, Y. Liu, et al., J. Energ. Chem. 50(2020) 395-401.
doi: 10.1016/j.jechem.2020.03.046
Y. Lei, Y. Wang, Y. Liu, et al., Angew. Chem. Int. Ed. 59(2020) 20794-20812.
doi: 10.1002/anie.201914647
Y. Liu, Q. Feng, W. Liu, et al., Nano Energy 81(2021) 105641.
doi: 10.1016/j.nanoen.2020.105641
J. Wang, C. He, J. Huo, L. Fu, C. Zhao, Adv. Theory Simul. 4(2021) 2100003.
doi: 10.1002/adts.202100003
J. Yu, C. He, C. Pu, et al., Chin. Chem. Lett. 32(2021) 3149-3154.
doi: 10.1016/j.cclet.2021.02.046
H. Yang, C. He, L. Fu, et al., Chin. Chem. Lett. 32(2021) 3202-3206.
doi: 10.1016/j.cclet.2021.03.038
W. Song, J. Wang, L. Fu, et al., Chin. Chem. Lett. 32(2021) 3137-3142.
doi: 10.1016/j.cclet.2021.02.043
L. Fu, R. Wang, C. Zhao, et al., Chem. Eng. J. 414(2021) 128857.
doi: 10.1016/j.cej.2021.128857
X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9(2016) 2177-2196.
doi: 10.1039/C6EE00383D
W. Tu, Y. Zhou, Z. Zou, Adv. Mater. 26(2014) 4607-4626.
doi: 10.1002/adma.201400087
H. Kotani, T. Miyazaki, E. Aoki, et al., ACS Appl. Energy Mater. 3(2020) 3193-3197.
doi: 10.1021/acsaem.0c00206
M. Watanabe, S. Sun, T. Ishihara, et al., ACS Appl. Energy Mater. 1(2018) 6072-6081.
doi: 10.1021/acsaem.8b01113
S. Gonuguntla, A. Tiwari, S. Madanaboina, G. Lingamallu, U. Pal, Int. J. Hydrogen. Energ 45(2020) 7508-7516.
doi: 10.1016/j.ijhydene.2019.04.268
E. Koposova, X. Liu, A. Pendin, et al., J. Phys. Chem. C. 120(2016) 13873-13890.
doi: 10.1021/acs.jpcc.6b01467
R. Ge, X. Li, B. Zhuang, et al., Appl. Catal., B 211(2017) 296-304.
doi: 10.1016/j.apcatb.2017.04.056
K. Li, L. Lin, T. Peng, et al., Chem. Commun. 51(2015) 12443-12446.
doi: 10.1039/C5CC03812J
H. Gao, J. Wang, M. Jia, et al., Chem. Eng. J. 374(2019) 684-693.
doi: 10.1016/j.cej.2019.06.002
X. Ning, Y. Wu, X. Ma, et al., Adv. Funct. Mater. 29(2019) 1902992.
doi: 10.1002/adfm.201902992
P. Li, X. Zhang, C. Hou, Y. Chen, T. He, Appl. Catal. B 238(2018) 656-663.
doi: 10.1016/j.apcatb.2018.07.066
S. Mei, J. Gao, Y. Zhang, et al., J. Colloid Interface Sci. 506(2017) 58-65.
doi: 10.1016/j.jcis.2017.07.030
G. Zhao, H. Pang, G. Liu, et al., Appl. Catal. B 200(2017) 141-149.
doi: 10.1016/j.apcatb.2016.06.074
L. Lin, C. Hou, X. Zhang, et al., Appl. Catal. B 221(2018) 312-319.
doi: 10.1016/j.apcatb.2017.09.033
S. Tian, S. Chen, X. Ren, et al., Nano Res. 13(2020) 2665-2672.
doi: 10.1007/s12274-020-2908-4
N. Xu, Y. Diao, X. Qin, et al., Dalton. Trans. 49(2020) 15587-15591.
doi: 10.1039/D0DT03205K
Y. l. Yan, Q.J. Fang, J.K. Pan, et al., Chem. Eng. J. 408(2021) 127358.
doi: 10.1016/j.cej.2020.127358
H. Zhong, R. Sa, H. Lv, et al., Adv. Funct. Mater. 30(2020) 2002654.
doi: 10.1002/adfm.202002654
F. Leng, H. Liu, M. Ding, Q.P. Lin, H.L. Jiang, ACS Catal. 8(2018) 4583-4590.
doi: 10.1021/acscatal.8b00764
J. Liu, Y.Z. Fan, X. Li, et al., Appl. Catal. B 231(2018) 173-181.
doi: 10.1016/j.apcatb.2018.02.055
N. Sadeghi, S. Sharifnia, T.Q. Do, J. Mater. Chem. A 6(2018) 18031-18035.
doi: 10.1039/C8TA07158F
Z.B. Fang, T.T. Liu, J. Liu, et al., J. Am. Chem. Soc. 142(2020) 12515-12523.
doi: 10.1021/jacs.0c05530
B. Mondal, A. Rana, P. Sen, A. Dey, J. Am. Chem. Soc. 137(2015) 11214-11217.
doi: 10.1021/jacs.5b05992
X. Zhang, M. Cibian, A. Call, K. Yamauchi, K. Sakai, ACS Catal. 9(2019) 11263-11273.
doi: 10.1021/acscatal.9b04023
Y. Kuramochi, Y. Fujisawa, A. Satake, J. Am. Chem. Soc. 142(2020) 705-709.
doi: 10.1021/jacs.9b12712
Z. Fan, K. Nomura, M. Zhu, et al., Commun. Chem. 2(2019) 55.
doi: 10.1038/s42004-019-0158-8
F. Kuttassery, S. Sagawa, S. Mathew, et al., ACS Appl. Energy Mater. 2(2019) 8045-8051.
doi: 10.1021/acsaem.9b01552
X.F. Liu, R.X. Li, X.T. Ren, et al., J. Catal. 348(2017) 314-320.
doi: 10.1016/j.jcat.2016.12.014
Z. Ma, Q. Zhang, S. Panda, et al., Sustain. Energy Fuels 4(2020) 4694-4703.
doi: 10.1039/D0SE00818D
M. Zhu, Y. Du, P. Yang, X. Wang, Catal. Sci. Technol. 3(2013) 2295-2302.
doi: 10.1039/c3cy00236e
H. Imahori, T. Umeyama, S. Ito, Accounts. Chem. Res. 42(2009) 1809-1818.
doi: 10.1021/ar900034t
L.J. Wang, R.L. Wang, X. Zhang, et al., ChemSusChem 13(2020) 2973-2980.
doi: 10.1002/cssc.202000103
L. Jin, S. Lv, Y. Miao, D. Liu, F. Song, ChemCatChem 13(2021) 140-152.
doi: 10.1002/cctc.202001179
R.K. Yadav, J. -O. Baeg, G.H. Oh, et al., J. Am. Chem. Soc. 134(2012) 11455-11461.
doi: 10.1021/ja3009902
A. Call, M. Cibian, K. Yamamoto, et al., ACS Catal. 9(2019) 4867-4874.
doi: 10.1021/acscatal.8b04975
P. Lang, M. Pfrunder, G. Quach, et al., Chem. Eur. J. 25(2019) 4509-4519.
doi: 10.1002/chem.201806347
Y.Q. Zhang, J.Y. Chen, P.E.M. Siegbahn, R.Z. Liao, ACS Catal. 10(2020) 6332-6345.
doi: 10.1021/acscatal.0c00559
H. Rao, J. Bonin, M. Robert, Chem. Commun. 53(2017) 2830-2833.
doi: 10.1039/C6CC09967J
M. Natali, R. Argazzi, C. Chiorboli, E. Iengo, F. Scandola, Chem. Eur. J. 19(2013) 9261-9271.
doi: 10.1002/chem.201300133
A.M. Kluwer, R. Kapre, F. Hartl, et al., Proc. Natl. Acad. Sci. 106(2009) 10460-10466.
doi: 10.1073/pnas.0809666106
K. Matsuyama, M. Motomura, T. Kato, T. Okuyama, H. Muto, Micropor. Mesopor. Mater. 225(2016) 26-32.
doi: 10.1016/j.micromeso.2015.12.005
Z. Zheng, H. Xu, Z. Xu, J. Ge, Small 14(2018) 1702812.
doi: 10.1002/smll.201702812
Y. Huang, Y. Zhang, X. Chen, et al., Chem. Commun. 50(2014) 10115-10117.
doi: 10.1039/C4CC04479G
Z. Ding, K. Wang, Z. Mai, et al., Int. J. Hydrogen. Energ 44(2019) 24680-24689.
doi: 10.1016/j.ijhydene.2019.07.244
Y. -H. Zhou, X. Cao, J. Ning, et al., Int. J. Hydrogen. Energ 45(2020) 31440-31451.
doi: 10.1016/j.ijhydene.2020.08.141
L. Chang, Y. Li, Mol. Catal. 433(2017) 77-83.
doi: 10.1016/j.mcat.2017.01.009
X. Yang, Q. Xu, Trends Chem. 2(2020) 214-226.
doi: 10.1016/j.trechm.2019.12.001
N. Zhang, Q. Shao, P. Wang, X. Zhu, X. Huang, Small 14(2018) 1704318.
doi: 10.1002/smll.201704318
R.J. Young, M.T. Huxley, E. Pardo, et al., Chem. Sci. 11(2020) 4031-4050.
doi: 10.1039/D0SC00485E
W. Cheng, Y. Peng, Y. Wang, et al., Int. J. Hydrogen. Energ 46(2021) 2204-2212.
doi: 10.1016/j.ijhydene.2020.10.140
C. Xu, J. Lin, D. Yan, et al., ACS Appl. Nano Mater. 3(2020) 6416-6422.
doi: 10.1021/acsanm.0c00884
L. Chen, B. Huang, X. Qiu, et al., Chem. Sci. 7(2016) 228-233.
doi: 10.1039/C5SC02925B
J. Cure, E. Mattson, K. Cocq, et al., J. Mater. Chem. A 7(2019) 17536-17546.
doi: 10.1039/C8TA12334A
N. Cao, S. Tan, W. Luo, K. Hu, G. Cheng, Catal. Lett. 146(2016) 518-524.
doi: 10.1007/s10562-015-1671-8
L. Li, H. Zhao, J. Wang, R. Wang, ACS Nano 8(2014) 5352-5364.
doi: 10.1021/nn501853g
Z. Li, H. Zhang, L. Kong, et al., J. Environ. Chem. Eng. 8(2020) 104363.
doi: 10.1016/j.jece.2020.104363
B. An, J. Zhang, K. Cheng, et al., J. Am. Chem. Soc. 139(2017) 3834-3840.
doi: 10.1021/jacs.7b00058
J. Wei, Y. Chen, H. Zhang, Z. Zhuang, Y. Yu, Chin. J. Catal. 42(2021) 78-86.
doi: 10.1016/S1872-2067(20)63661-0
S. Laha, D. Rambabu, S. Bhattacharyya, T.K. Maji, Chem. Eur. J. 26(2020) 14671-14678.
doi: 10.1002/chem.202002439
J. Yang, H. Guo, S. Chen, et al., J. Mater. Chem. A 6(2018) 13859-13866.
doi: 10.1039/C8TA03249A
L. Tang, J. Shi, H. Wu, et al., Nanotechnology 28(2017) 365604.
doi: 10.1088/1361-6528/aa79e1
X. Zhao, H. Xu, X. Wang, et al., ACS Appl. Mater. Interfaces 10(2018) 15096-15103.
doi: 10.1021/acsami.8b03561
Y. Yue, A.J. Binder, R. Song, et al., Dalton. Trans. 43(2014) 17893-17898.
doi: 10.1039/C4DT02516D
L. Ma, W. Hu, B. Mei, et al., ACS Catal. 10(2020) 4534-4542.
doi: 10.1021/acscatal.0c00243
T. Zhao, I. Boldog, V. Spasojevic, et al., J. Mater. Chem. C 4(2016) 6588-6601.
doi: 10.1039/C6TC01297C
R. Ren, H. Zhao, X. Sui, et al., Catalysts 9(2019) 89.
doi: 10.3390/catal9010089
D.I. Won, J.S. Lee, Q. Ba, et al., ACS Catal. 8(2018) 1018-1030.
doi: 10.1021/acscatal.7b02961
S. Lian, M.S. Kodaimati, E.A. Weiss, ACS Nano 12(2018) 568-575.
doi: 10.1021/acsnano.7b07377
Z. Zhang, Y. Zhu, X. Chen, H. Zhang, J. Wang, Adv. Mater. 31(2019) 1806626.
doi: 10.1002/adma.201806626
G.B. Bodedla, J. Huang, W. -Y. Wong, X. Zhu, ACS Appl. Nano Mater. 3(2020) 7040-7046.
N. Zhang, L. Wang, H. Wang, et al., Nano Lett. 18(2018) 560-566.
doi: 10.1021/acs.nanolett.7b04701
G. Yang, C. Lin, X. Feng, T. Wang, J. Jiang, Chem. Commun. 56(2020) 527-530.
doi: 10.1039/C9CC08060K
J. Wang, Y. Zhong, L. Wang, et al., Nano Lett. 16(2016) 6523-6528.
doi: 10.1021/acs.nanolett.6b03135
H.H. Tsai, M.C. Simpson, Chem. Phys. Lett. 353(2002) 111-118.
doi: 10.1016/S0009-2614(01)01457-9
L.L. Li, E.W.G. Diau, Chem. Soc. Rev. 42(2013) 291-304.
doi: 10.1039/C2CS35257E
R. Frisenda, A.J. Molina-Mendoza, T. Mueller, A. Castellanos-Gomez, H.S.J. van der Zant, Chem. Soc. Rev. 47(2018) 3339-3358.
doi: 10.1039/C7CS00880E
X. Zou, L. Ji, X. Yang, et al., J. Am. Chem. Soc. 139(2017) 16060-16063.
doi: 10.1021/jacs.7b09090
Y. Zhang, R. Suzuki, Y. Iwasa, ACS Nano 11(2017) 12583-12590.
doi: 10.1021/acsnano.7b06752
G. Pu, Z. Yang, Y. Wu, et al., Anal. Chem. 91(2019) 2319-2328.
doi: 10.1021/acs.analchem.8b05027
E.S. Da Silva, N.M.M. Moura, M.G.P.M.S. Neves, et al., Appl. Catal. 221(2018) 56-69 B.
doi: 10.1016/j.apcatb.2017.08.079
T. Higashino, Y. Kurumisawa, S. Nimura, H. Iiyama, H. Imahori, Eur. J. Org. Chem. 2018(2018) 2537-2547.
doi: 10.1002/ejoc.201701736
J. Nieto-Pescador, B. Abraham, J. Li, et al., J. Phys. Chem. C. 120(2016) 48-55.
doi: 10.1021/acs.jpcc.5b09463
K.J. Shah, T. Imae, J. Mater. Chem. A 5(2017) 9691-9701.
doi: 10.1039/C7TA01861D
L. Xie, J. Tian, Y. Ouyang, et al., Angew. Chem. Int. Ed. 59(2020) 15844-15848.
doi: 10.1002/anie.202003836
Y. Zhang, Y. Wang, L.C. An, et al., Mater. Chem. Front. 4(2020) 2754-2761.
doi: 10.1039/D0QM00314J
J. Wang, Y. Zheng, T. Peng, J. Zhang, R. Li, ACS Sustain. Chem. Eng. 5(2017) 7549-7556.
doi: 10.1021/acssuschemeng.7b00700
P. Zeng, Y. Zheng, S. Chen, et al., New J. Chem. 44(2020) 11237-11247.
doi: 10.1039/D0NJ02056G
M.J. Latter, S.J. Langford, Int. J. Mol. Sci. 11(2010) 1878-1887.
doi: 10.3390/ijms11041878
E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, et al., J. Am. Chem. Soc. 132(2010) 11539-11551.
doi: 10.1021/ja1023496
M. Imran, M. Ramzan, A.K. Qureshi, M.A. Khan, M. Tariq, Biosensors 8(2018) 95.
doi: 10.3390/bios8040095
Y. Liu, L. Wang, H. Feng, et al., Nano Lett. 19(2019) 2614-2619.
doi: 10.1021/acs.nanolett.9b00423
S.S. Wang, H.H. Huang, M. Liu, et al., Inorg. Chem. 59(2020) 6301-6307.
doi: 10.1021/acs.inorgchem.0c00407
S. Fukuzumi, T. Kojima, J. Mater. Chem. 18(2008) 1427-1439.
doi: 10.1039/b717958h
M.S. Choi, T. Yamazaki, I. Yamazaki, T. Aida, Angew. Chem. Int. Ed. 43(2004) 150-158.
doi: 10.1002/anie.200301665
M.N. Ha, G. Lu, Z. Liu, L. Wang, Z. Zhao, J. Mater. Chem. A 4(2016) 13155-13165.
doi: 10.1039/C6TA05402A
A. Fateeva, P.A. Chater, C.P. Ireland, et al., Angew. Chem. Int. Ed. 51(2012) 7440-7444.
doi: 10.1002/anie.201202471
Y. Liu, Y. Yang, Q. Sun, et al., ACS Appl. Mater. Interfaces 5(2013) 7654-7658.
doi: 10.1021/am4019675
R.N. Sampaio, D.C. Grills, D.E. Polyansky, D.J. Szalda, E. Fujita, J. Am. Chem. Soc. 142(2020) 2413-2428.
doi: 10.1021/jacs.9b11897
X. Wang, Z. Chen, X. Zhao, et al., Angew. Chem. Int. Ed. 57(2018) 1944-1948.
doi: 10.1002/anie.201712451
Z. Chen, J. Wang, S. Zhang, et al., ACS Appl. Energy Mater. 2(2019) 5665-5676.
doi: 10.1021/acsaem.9b00811
Y.N. Gong, W. Zhong, Y. Li, et al., J. Am. Chem. Soc. 142(2020) 16723-16731.
doi: 10.1021/jacs.0c07206
A. Fujishima, K. Honda, Nature 238(1972) 37-38.
doi: 10.1038/238037a0
Y. Yuan, H. Lu, Z. Ji, et al., Chem. Eng. J. 275(2015) 8-16.
doi: 10.1016/j.cej.2015.04.015
Y.J. Yuan, J.R. Tu, Z.J. Ye, et al., Dyes Pigments 123(2015) 285-292.
doi: 10.1016/j.dyepig.2015.08.014
Y.J. Yuan, D. Chen, J. Zhong, et al., J. Phys. Chem. C 121(2017) 24452-24462.
doi: 10.1021/acs.jpcc.7b08290
P. Li, C. Hou, X. Zhang, Y. Chen, T. He, Appl. Surf. Sci. 459(2018) 292-299.
doi: 10.1016/j.apsusc.2018.08.002
K. Liu, R. Xing, Y. Li, et al., Angew. Chem. Int. Ed. 55(2016) 12503-12507.
doi: 10.1002/anie.201606795
F. Akbari Beni, A. Gholami, A. Ayati, M. Niknam Shahrak, M. Sillanpää, Micropor. Mesopor. Mater. 303(2020) 110275.
doi: 10.1016/j.micromeso.2020.110275
E.V. Ramos-Fernandez, C. Pieters, B. van der Linden, et al., J. Catal. 289(2012) 42-52.
doi: 10.1016/j.jcat.2012.01.013
B. Yan, K. Qian, Photochem. Photobiol. 85(2009) 1278-1285.
doi: 10.1111/j.1751-1097.2009.00596.x
B. Yan, H.F. Lu, Inorg. Chem. 47(2008) 5601-5611.
doi: 10.1021/ic7021825
M. Guo, B. Yan, L. Guo, X.F. Qiao, Colloids Surf. A 380(2011) 53-59.
doi: 10.1016/j.colsurfa.2011.02.018
D.M. Fabian, A.M. Ganose, J.W. Ziller, et al., ACS Appl. Energy Mater. 2(2019) 1579-1587.
F.D. Lewis, J. Liu, W. Weigel, et al., Proc. Natl. Acad. Sci. 99(2002) 12536-12541.
doi: 10.1073/pnas.192432899
P. Urchaga, M. Weissmann, S. Baranton, T. Girardeau, C. Coutanceau, Langmuir 25(2009) 6543-6550.
doi: 10.1021/la9000973
C. Schubert, J.T. Margraf, T. Clark, D.M. Guldi, Chem. Soc. Rev. 44(2015) 988-998.
doi: 10.1039/C4CS00262H
C. Benesch, M.F. Rode, M. Čízĕk, et al., J. Phys. Chem. C 113(2009) 10315-10318.
P. Wang, M. Xi, S.Z. Kang, et al., Int. J. Hydrogen. Energ 45(2020) 6508-6518.
doi: 10.1016/j.ijhydene.2019.12.179
X. Guo, X. Li, L. Qin, S.Z. Kang, G. Li, Appl. Catal. B 243(2019) 1-9.
doi: 10.1016/j.apcatb.2018.10.030
M. Xi, P. Wang, M. Zhang, et al., Appl. Surf. Sci. 529(2020) 147200.
doi: 10.1016/j.apsusc.2020.147200
L. Li, G.B. Bodedla, Z. Liu, X. Zhu, Appl. Surf. Sci. 499(2020) 143755.
doi: 10.1016/j.apsusc.2019.143755
S. Tian, S. Chen, X. Ren, et al., Nano Res. 12(2019) 3109-3115.
doi: 10.1007/s12274-019-2562-x
Q. Luo, R. Ge, S.Z. Kang, et al., Appl. Surf. Sci. 427(2018) 15-23.
doi: 10.1016/j.apsusc.2017.08.152
M. Zhu, Z. Li, B. Xiao, et al., ACS Appl. Mater. Interfaces 5(2013) 1732-1740.
doi: 10.1021/am302912v
X. Zhang, L. Lin, D. Qu, et al., Appl. Catal. B 265(2020) 118595.
doi: 10.1016/j.apcatb.2020.118595
L. Wang, S. Duan, P. Jin, et al., Appl. Catal. B 239(2018) 599-608.
doi: 10.1016/j.apcatb.2018.08.007
Q. Li, Q. Zeng, L. Gao, et al., J. Mater. Chem. A 5(2017) 155-164.
doi: 10.1039/C6TA07508H
T. Hasobe, H. Sakai, K. Mase, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. C 117(2013) 4441-4449.
doi: 10.1021/jp400381h
R. Ge, X. Li, S.Z. Kang, L. Qin, G. Li, Appl. Catal. B 187(2016) 67-74.
doi: 10.1016/j.apcatb.2016.01.024
K. Zhu, Q. Luo, S.Z. Kang, et al., Nanoscale 10(2018) 18635-18641.
doi: 10.1039/C8NR06138F
Z. Zou, J. Ye, H. Arakawa, J. Phys. Chem. B 106(2002) 517-520.
doi: 10.1021/jp012982f
U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, RSC Adv. 8(2018) 17582-17594.
doi: 10.1039/C8RA01638K
N.U. Saqib, R. Adnan, I. Shah, Environ. Sci. Pollut. Res. 23(2016) 15941-15951.
doi: 10.1007/s11356-016-6984-7
L. Zhang, L. Qin, S.Z. Kang, G.D. Li, X. Li, ACS Sustain. Chem. Eng. 7(2019) 8358-8366.
doi: 10.1021/acssuschemeng.8b06867
K. Zhu, M. Zhang, X. Feng, et al., Appl. Catal. B 268(2020) 118434.
doi: 10.1016/j.apcatb.2019.118434
M. Zhang, K. Zhu, L. Qin, A.Z. Kang, X. Li, Catal. Sci. Technol. 10(2020) 1640-1649.
doi: 10.1039/C9CY02272D
K. Ohkubo, P.J. Sintic, N.V. Tkachenko, et al., Chem. Phys. 326(2006) 3-14.
doi: 10.1016/j.chemphys.2006.01.034
Z. Xia, N. Xue, W. Shi, C. Lu, J. Phys. Chem. C 123(2019) 30536-30544.
doi: 10.1021/acs.jpcc.9b08488
S. Fukuzumi, K. Ohkubo, T. Suenobu, Accounts. Chem. Res. 47(2014) 1455-1464.
doi: 10.1021/ar400200u
K. Ohkubo, S. Fukuzumi, B. Chem, Soc. Jpn. 82(2009) 303-315.
N.L. Bill, M. Ishida, Y. Kawashima, et al., Chem. Sci. 5(2014) 3888-3896.
doi: 10.1039/C4SC00803K
J.B. Kelber, N.A. Panjwani, D. Wu, et al., Chem. Sci. 6(2015) 6468-6481.
doi: 10.1039/C5SC01830G
K. Sakakibara, S. Nagino, H. Akanuma, et al., Dalton. Trans. 46(2017) 12645-12654.
doi: 10.1039/C7DT02674A
M. Natali, A. Amati, N. Demitri, E. Iengo, Chem. Commun. 54(2018) 6148-6152.
doi: 10.1039/C8CC03441A
K. Ohkubo, R. Garcia, P.J. Sintic, et al., Chem. Eur. J. 15(2009) 10493-10503.
doi: 10.1002/chem.200901105
P.K. Poddutoori, N. Zarrabi, A.G. Moiseev, et al., Chem. Eur. J. 19(2013) 3148-3161.
doi: 10.1002/chem.201202995
M.S. Asano, M. Shibuki, T. Otsuka, Chem. Lett. 45(2016) 1114-1116.
doi: 10.1246/cl.160442
B.W. Cohen, B.M. Lovaasen, C.K. Simpson, et al., Inorg. Chem. 49(2010) 5777-5779.
doi: 10.1021/ic100316s
H. Imahori, D.M. Guldi, K. Tamaki, et al., J. Am. Chem. Soc. 123(2001) 6617-6628.
doi: 10.1021/ja004123v
S. Fukuzumi, K. Ohkubo, et al., J. Am. Chem. Soc. 125(2003) 14984-14985.
doi: 10.1021/ja037214b
J. Li, Y. Qiao, T. Pan, et al., Sensors 18(2018) 3752.
W. Kim, T. Tachikawa, T. Majima, et al., Energy Environ. Sci. 3(2010) 1789-1795.
doi: 10.1039/c0ee00205d
Q. Zuo, T. Liu, C. Chen, et al., Angew. Chem. Int. Ed. 58(2019) 10198-10203.
doi: 10.1002/anie.201904058
E.X. Chen, M. Qiu, Y.F. Zhang, et al., Adv. Mater. 30(2018) 1704388.
doi: 10.1002/adma.201704388
Y. Hou, E. Zhang, J. Gao, et al., Dalton. Trans. 49(2020) 7592-7597.
doi: 10.1039/D0DT01436B
L. Chen, Y. Wang, F. Yu, X. Shen, C. Duan, J. Mater. Chem. A 7(2019) 11355-11361.
doi: 10.1039/C9TA01840A
N. Sadeghi, S. Sharifnia, M. Sheikh Arabi, J. CO2 Util. 16(2016) 450-457.
doi: 10.1016/j.jcou.2016.10.006
H. Zhang, J. Wei, J. Dong, et al., Angew. Chem. Int. Ed. 55(2016) 14310- 14314.
doi: 10.1002/anie.201608597
H.G.R. Monestel, I.S. Amiinu, A.A. González, et al., Chin. J. Catal. 41(2020) 839-846.
doi: 10.1016/S1872-2067(19)63488-1
Y. Li, X. Cai, S. Chen, et al., ChemSusChem 11(2018) 1040-1047.
doi: 10.1002/cssc.201800016
Y.H. Xiao, W. Tian, S. Jin, Z.G. Gu, J. Zhang, Small 16(2020) 2005111.
doi: 10.1002/smll.202005111
Y. Diao, N. Xu, M.Q. Li, X. Zhu, Z. Xu, Inorg. Chem. 59(2020) 12643-12649.
doi: 10.1021/acs.inorgchem.0c01744
L. Wang, P. Jin, S. Duan, et al., Sci. Bull. 64(2019) 926-933.
doi: 10.1016/j.scib.2019.05.012
H.Q. Xu, J. Hu, D. Wang, et al., J. Am. Chem. Soc. 137(2015) 13440-13443.
doi: 10.1021/jacs.5b08773
G. Lan, Y. -Y. Zhu, S.S. Veroneau, et al., J. Am. Chem. Soc. 140(2018) 5326-5329.
doi: 10.1021/jacs.8b01601
M. Lu, J. Liu, Q. Li, et al., Angew. Chem. Int. Ed. 58(2019) 12392-12397.
doi: 10.1002/anie.201906890
X. Yang, J.K. Sun, M. Kitta, H. Pang, Q. Xu, Nat. Catal. 1(2018) 214-220.
doi: 10.1038/s41929-018-0030-8
L.Y. Wu, Y.F. Mu, X.X. Guo, et al., Angew. Chem. Int. Ed. 58(2019) 9491-9495.
doi: 10.1002/anie.201904537
S. Li, H.M. Mei, S.L. Yao, et al., Chem. Sci. 10(2019) 10577-10585.
doi: 10.1039/C9SC01866B
C. Zheng, X. Qiu, J. Han, Y. Wu, S. Liu, ACS Appl. Mater. Interfaces 11(2019) 42243-42249.
doi: 10.1021/acsami.9b15306
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Lei Wang , Jun-Jie Wu , Chang-Cun Yan , Wan-Ying Yang , Zong-Lu Che , Xin-Yu Xia , Xue-Dong Wang , Liang-Sheng Liao . Near-infrared organic lasers with ultra-broad emission bands by simultaneously harnessing four-level and six-level systems. Chinese Chemical Letters, 2024, 35(8): 109365-. doi: 10.1016/j.cclet.2023.109365
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
Renyuan Wang , Lei Ke , Houxiang Wang , Yueheng Tao , Yujie Cui , Peipei Zhang , Minjie Shi , Xingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920
Yuqing Wang , Zhemin Li , Qingjun Lu , Qizhao Li , Jiaxin Luo , Chengjie Li , Yongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Yuan Zhang , Shenghao Gong , A.R. Mahammed Shaheer , Rong Cao , Tianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587
Shehla Khalid , Muhammad Bilal , Nasir Rasool , Muhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yijian Zhao , Jvzhe Li , Yunyi Shi , Jie Hu , Meiyi Liu , Yao Shen , Xinglin Hou , Qiuyue Wang , Qi Wang , Zhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299