Influence of Pd deposition pH value on the performance of Pd-CuO/SiO2 catalyst for semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY)
-
* Corresponding author.
E-mail address: yjguan@chem.ecnu.edu.cn (Y. Guan).
Citation:
Jiamin Xu, Xiaowen Guo, Yejun Guan, Peng Wu. Influence of Pd deposition pH value on the performance of Pd-CuO/SiO2 catalyst for semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY)[J]. Chinese Chemical Letters,
;2022, 33(1): 349-353.
doi:
10.1016/j.cclet.2021.06.012
F. Zaera, ACS Catal. 7 (2017) 4947–4967.
doi: 10.1021/acscatal.7b01368
J.A. Delgado, O. Benkirane, C. Claver, D. Curulla-Ferré, C. Godard, Dalton Trans. 46 (2017) 12381–12403.
doi: 10.1039/C7DT01607G
J.A. Delgado, C. Godard, Progress in the selective semi-hydrogenation of alkynes by nanocatalysis, in: P.W.N.M. van Leeuwen, C. Claver (Eds. ), Recent Advances in Nanoparticle Catalysis, Springer Molecular Catalysis 1, Spain, 2020, pp. 303-344.
M. García-Mota, B. Bridier, J. Pérez-Ramírez, N. López, J. Catal. 273 (2010) 92–102.
doi: 10.1016/j.jcat.2010.04.018
D. Teschner, J. Borsodi, A. Wootsch, et al., Science320 (2008) 86–89.
doi: 10.1126/science.1155200
M. Armbrüster, M. Behrens, F. Cinquini, et al., ChemCatChem4 (2012) 1048–1063.
doi: 10.1002/cctc.201200100
S.F. Parker, H.C. Walker, S.K. Callear, et al., Chem. Sci. 10 (2019) 480–489.
doi: 10.1039/c8sc03766c
G. Pei, X. Liu, X. Yang, et al., ACS Catal. 7 (2017) 1491–1500.
doi: 10.1021/acscatal.6b03293
M.R. Ball, K.R. Rivera-Dones, E.B. Gilcher, et al., ACS Catal. 10 (2020) 8567–8581.
doi: 10.1021/acscatal.0c01536
M. Crespo-Quesada, A. Yarulin, M. Jin, Y. Xia, L. Kiwi-Minsker, J. Am. Chem. Soc. 133 (2011) 12787–12794.
doi: 10.1021/ja204557m
R. Ma, N. Semagina, J. Phys. Chem. C114 (2010) 15417–15423.
doi: 10.1021/jp103754b
X. Zhao, L. Zhou, W. Zhang, et al., Chem4 (2018) 1080–1091.
doi: 10.1016/j.chempr.2018.02.011
W. Niu, Y. Gao, W. Zhang, N. Yan, X. Lu, Angew. Chem. Int. Ed. 54 (2015) 8271–8274.
doi: 10.1002/anie.201503148
M.W. Tew, H. Emerich, J.A. van Bokhoven, J. Phys. Chem. C115 (2011) 8457–8465.
doi: 10.1021/jp1103164
G. Pei, X. Liu, A. Wang, et al., ACS Catal. 5 (2015) 3717–3725.
doi: 10.1021/acscatal.5b00700
G. Kyriakou, M.B. Boucher, A.D. Jewell, et al., Science335 (2012) 1209–1212.
doi: 10.1126/science.1215864
M.B. Boucher, B. Zugic, G. Cladaras, et al., Phys. Chem. Chem. Phys. 15 (2013) 12187–12196.
doi: 10.1039/c3cp51538a
X. Li, Z. Wang, Z. Zhang, et al., Mater. Horiz. 4 (2017) 584–590.
doi: 10.1039/C6MH00478D
Q. Feng, S. Zhao, Y. Wang, et al., J. Am. Chem. Soc. 139 (2017) 7294–7301.
doi: 10.1021/jacs.7b01471
M. Armbrüster, K. Kovnir, M. Behrens, et al., J. Am. Chem. Soc. 132 (2010) 14745–14747.
doi: 10.1021/ja106568t
S. Furukawa, T. Komatsud, K. Shimizu, J. Mater. Chem. A8 (2020) 15620–15645.
doi: 10.1039/d0ta03733h
J.A. Anderson, J. Mellor, R.P.K. Wells, J. Catal. 261 (2009) 208–216.
doi: 10.1016/j.jcat.2008.11.023
L. Shen, S. Mao, J. Li, et al., J. Catal. 350 (2017) 13–20.
doi: 10.1016/j.jcat.2017.01.021
M. Krajčí, J. Hafner, J. Phys. Chem. C118 (2014) 12285–12301.
doi: 10.1021/jp5025075
S. Mao, B. Zhao, Z. Wang, et al., Green Chem. 21 (2019) 4143–4151.
doi: 10.1039/c9gc01356c
A.J. McCue, A.M. Shepherd, J.A. Anderson, Catal. Sci. Technol. 5 (2015) 2880–2890.
doi: 10.1039/C5CY00253B
A.J. McCue, C.J. McRitchie, A.M. Shepherd, J.A. Anderson, J. Catal. 319 (2014) 127–135.
X. Cao, A. Mirjalili, J. Wheeler, W. Xie, B.W. -L. Jang, Front. Chem. Sci. Eng. 9 (2015) 442–449.
doi: 10.1007/s11705-015-1547-x
Q. Liu, D. Zhou, Y. Yuya, I. Ryoichi, O. Masazumi, Trans. Nonferrous Met. Soc. China22 (2012) 117–123.
doi: 10.1016/S1003-6326(11)61149-7
S.J. Gentry, P.T. Walsh, J. Chem. Soc., Faraday Trans. I78 (1982) 1515–1523.
doi: 10.1039/f19827801515
T. Mitsudome, T. Urayama, K. Yamazaki, et al., ACS Catal. 6 (2016) 666–670.
doi: 10.1021/acscatal.5b02518
F.P. da Silva, J.L. Fiorio, R.V. Goncalves, E. Teixeira-Neto, L.M. Rossi, Ind. Eng. Chem. Res. 57 (2018) 16209–16216.
doi: 10.1021/acs.iecr.8b03627
M.S. Walnwright, T. Ahn, D.L. Trimm, N.W. Cant, J. Chem. Eng. Data32 (1987) 22–24.
doi: 10.1021/je00047a006
Á. Molnár, A. Sárkány, M. Varga, J. Mol. Catal. A: Chem. 173 (2001) 185–221.
doi: 10.1016/S1381-1169(01)00150-9
S. Vernuccio, R. Goy, P.R. von Rohr, J. Medlock, W. Bonrath, React. Chem. Eng. 1 (2016) 445–453.
doi: 10.1039/C6RE00093B
F. Ferrante, A. Prestianni, D. Duca, J. Phys. Chem. C118 (2014) 551–558.
doi: 10.1021/jp410878j
L. Nikoshvili, E. Shimanskaya, A. Bykov, et al., Catal. Today241 (2015) 179–188.
doi: 10.1016/j.cattod.2014.01.045
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Zhao Gu , Yunhui Yang , Song Ye , Congyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334
Liangfeng Yang , Liang Zeng , Yanping Zhu , Qiuan Wang , Jinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
Liang Dong , Jingkuo Qu , Tuo Zhang , Guanghui Zhu , Ningning Ma , Chang Zhao , Yi Yuan , Xiangjiu Guan , Liejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Zhaojun Liu , Zerui Mu , Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Xian Yan , Huawei Xie , Gao Wu , Fang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279
Shuai Zhu , Mingjie Chen , Haichao Shen , Hanming Ding , Wenbo Li , Junliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879
Yunqiang Li , Yongxian Huang , Sinuo Li , He Huang , Zhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
Xiaoya Cui , Yanchang Liu , Qiang Li , He Zhu , Shibo Xi , Jianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
Luyao Lu , Chen Zhu , Fei Li , Pu Wang , Xi Kang , Yong Pei , Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411