Citation: Han Wang, Yongbin Xie, Yicheng Zhou, Nannan Cen, Wenbo Chen. Catalyst-free, direct electrochemical trifluoromethylation/cyclization of N-arylacrylamides using TfNHNHBoc as a CF3 source[J]. Chinese Chemical Letters, ;2022, 33(1): 221-224. doi: 10.1016/j.cclet.2021.06.008 shu

Catalyst-free, direct electrochemical trifluoromethylation/cyclization of N-arylacrylamides using TfNHNHBoc as a CF3 source

    * Corresponding author.
    E-mail address: wenbochen@shiep.edu.cn (W. Chen).
  • Received Date: 1 April 2021
    Revised Date: 3 June 2021
    Accepted Date: 3 June 2021
    Available Online: 10 June 2021

Figures(6)

  • A new electrochemical strategy for trifluoromethylation/cyclization using TfNHNHBoc as a CF3 source was established. This approach was realized by the direct electrolysis of TfNHNHBoc under external oxidant-free and catalyst-free conditions, and afforded various trifluoromethylated oxindoles with good functional group compatibility and broad substrate scope. Preliminary mechanistic studies show that the reaction proceeds by a radical process.
  • 加载中
    1. [1]

      (a) E. Merino, C. Nevado, Chem. Soc. Rev. 43 (2014) 6598-6608;
      (b) C. Alonso, M.D.M. Eduardo, G. Rubiales, et al., Chem. Rev. 115 (2015) 1847-1935;
      (c) H.X. Song, Q.Y. Han, C.L. Zhao, et al., Green Chem 20 (2018) 1662-1731;
      (d) H. Egami, M. Sodeoka, Angew. Chem. Int. Ed. 53 (2014) 8294-8308;
      (e) S. Barata-Vallejo, B. Lantaño, A. Postigo, Chem. Eur. J. 20 (2014) 16806-16829.

    2. [2]

      (a) O.A. Tomashenko, V.V. Grushin, Chem. Rev. 111 (2011) 4475-4521;
      (b) L. Chu, F.L. Qing, Acc. Chem. Res. 47 (2014) 1513-1522;
      (c) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 115 (2015) 650-682;
      (d) X. Liu, C. Xu, M. Wang, et al., Chem. Rev. 115 (2015) 683-730;
      (e) C. Ni, M. Hu, J. Hu, Chem. Rev. 115 (2015) 765-825;
      (f) B. Lantaño, M.R. Torviso, S.M. Bonesi, et al., Coord. Chem. Rev. 285 (2015) 76-108.

    3. [3]

      (a) H. Ge, B. Wu, Y. Liu, et al., ACS. Catal. 10 (2020) 12414-12424;
      (b) H. Ge, Q. Shen, Org. Chem. Front. 6 (2019) 2205-2209;
      (c) A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950-8958.

    4. [4]

      (a) X. Mu, T. Wu, H.Y. Wang, et al., J. Am. Chem. Soc. 134 (2012) 878-881;
      (b) J. Li, Y. Lei, Y. Yu, et al., Org. Let. 19 (2017) 6052-6055;
      (c) L. Li, M. Deng, S.C. Zheng, et al., Org. Lett. 16 (2014) 504-507;
      (d) J.S. Lin, X.G. Liu, X.L. Zhu, et al., J. Org. Chem. 79 (2014) 7084-7092;
      (e) Y.F. Wang, J. Qiu, D. Kong, et al., Synlett 25 (2014) 1731-1734;
      (f) W. Fu, F. Xu, Y. Fu, et al., Eur. J. Org. Chem. 2014 (2014) 709-712.

    5. [5]

      (a) Q. Guo, M. Wang, Y. Wang, et al., Chem. Commun. 53 (2017) 12317-12320;
      (b) S. Choi, Y.J. Kim, S.M. Kim, et al., Nat. Commun. 5 (2014) 4881;
      (c) S. Tang, Z.H. Li, M.W. Wang, et al., Org. Biomol. Chem. 13 (2015) 5285-5288;
      (d) Q. Li, W. Fan, D. Peng, et al., ACS. Catal. 10 (2020) 4012-4018.

    6. [6]

      (a) L. Zhang, Z. Li, Z.Q. Liu, Org. Lett. 16 (2014) 3688-3691;
      (b) W. Wei, J. Wen, D. Yang, et al., J. Org. Chem. 79 (2014) 4225-4230;
      (c) R. Sakamoto, H. Kashiwagi, S. Selvakumar, et al., Org. Biomol. Chem. 14 (2016) 6417-6421.

    7. [7]

      (a) D.F. Luo, J. Xu, Y. Fu, et al., Tetrahedron. Lett. 53 (2012) 2769-2772;
      (b) J. Xu, D.F. Luo, B. Xiao, et al., Chem. Commun. 47 (2011) 4300-4302.

    8. [8]

      (a) H. Egami, R. Shimizu, M. Sodeoka, J. Fluorine. Chem. 152 (2013) 51-55;
      (b) P. Xu, J. Xie, Q. Xue, et al., Chem. Eur. J. 19 (2013) 14039-14042;
      (c) J.H. Ye, L. Zhu, S.S. Yan, et al., ACS. Catal. 7 (2017) 8324-8330;
      (d) L. Wu, F. Wang, X. Wan, et al., J. Am. Chem. Soc. 139 (2017) 2904-2907;
      (e) B. Janhsen, A. Studer, J. Org. Chem. 82 (2017) 11703-11710;
      (f) J.H. Ye, L. Song, W.J. Zhou, et al., Angew. Chem. Int. Ed. 128 (2016) 10176-10180;
      (g) F. Wang, D. Wang, X. Wan, et al., J. Am. Chem. Soc. 138 (2016) 15547-15550;
      (h) M. Yang, W. Wang, Y. Liu, et al., Chin. J. Chem. 32 (2014) 833-837;
      (i) R. Zhu, S.L. Buchwald, Angew. Chem. Int. Ed. 125 (2013) 12887-12890;
      (j) N.Y. Yang, Z.L. Li, L. Ye, et al., Chem. Commun. 52 (2016) 9052-9055.

    9. [9]

      (a) M. Yan, Y. Kawamata, P.S. Baran, Chem. Rev. 117 (2017) 13230-13319;
      (b) K.D. Moeller, Chem. Rev. 118 (2018) 4817-4833;
      (c) C. Kingston, M.D. Palkowitz, Y. Takahira, et al., Acc. Chem. Res. 53 (2020) 72-83;
      (d) B.K. Peters, K.X. Rodriguez, S.H. Reisberg, et al., Science 363 (2019) 838-845;
      (e) Y. Yuan, A. Lei, Nat. Commun. 11 (2020) 802.

    10. [10]

      (a) A.G. O'Brien, A. Maruyama, Y. Inokuma, et al., Angew. Chem. Int. Ed. 53 (2014) 11868-11871;
      (b) G.Y. Dou, Y.Y. Jiang, K. Xu, et al., Org. Chem. Front. 6 (2019) 2392-2397;
      (c) Y. Deng, F. Lu, S. You, et al., Chin. J. Chem. 37 (2019) 817-820;
      (d) C. Xu, Y. Liu, H. Liu, et al., Tetrahedron. Lett. 61 (2020) 152226.

    11. [11]

      (a) K. Arai, K. Watts, T. Wirth, ChemistryOpen 3 (2014) 23-28;
      (b) K.Y. Ye, G. Pombar, N. Fu, et al., J. Am. Chem. Soc. 140 (2018) 2438-2441;
      (c) L. Zhang, G. Zhang, P. Wang, et al., Org. Lett. 20 (2018) 7396-7399;
      (d) W. Jud, C.O. Kappe, D. Cantillo, Chem. Eur. J. 24 (2018) 17234-17238;
      (e) Z. Zou, W. Zhang, Y. Wang, et al., Org. Lett. 21 (2019) 1857-1862;
      (f) X. Sun, H.X. Ma, T.S. Mei, et al., Org. Lett. 21 (2019) 3167-3171.

    12. [12]

      (a) Z. Li, L. Jiao, Y. Sun, et al., Angew. Chem. Int. Ed. 59 (2020) 7266-7270;
      (b) A. Claraz, T. Courant, G. Masson, Org. Lett. 22 (2020) 1580-1584;
      (c) J.C. Kang, Y.Q. Tu, J.W. Dong, et al., Org. Lett. 21 (2019) 2536-2540;
      (d) K.Y. Ye, Z. Song, G.S. Sauer, et al., Chem. Eur. J. 24 (2018) 12274-12279;
      (e) G.S. Sauer, S. Lin, ACS. Catal. 8 (2018) 5175-5187.

    13. [13]

      (a) J. Sun, J.K. Qiu, Y.L. Zhu, et al., J. Org. Chem. 80 (2015) 8217-8224;
      (b) S.R. Guo, W.M. He, J.N. Xiang, et al., Chem. Commun. 50 (2014) 8578-8581;
      (c) G. Rong, J. Mao, H. Yan, et al., J. Org. Chem. 80 (2015) 4697-4703;
      (d) T.T. Wang, F.L. Yang, S.K. Tian, Adv. Synth. Catal. 357 (2015) 928-932;
      (e) F.L. Yang, Y. Gui, B.K. Yu, et al., Adv. Synth. Catal. 358 (2016) 3368-3372;
      (f) F. Xiao, H. Xie, S. Liu, et al., Adv. Synth. Catal. 356 (2014) 364-368;
      (g) F.L. Yang, F.X. Wang, T.T. Wang, et al., Chem. Commun. 50 (2014) 2111-2113;
      (h) J. Zhang, Y. Shao, H. Wang, et al., Org. Lett. 16 (2014) 3312-3315;
      (i) M. Zhang, P. Xie, W. Zhao, et al., J. Org. Chem. 80 (2015) 4176-4183;
      (j) X. Zhao, L. Zhang, T. Li, et al., Chem. Commun. 50 (2014) 13121-13123;
      (k) X. Zhao, L. Zhang, X. Lu, et al., J. Org. Chem. 80 (2015) 2918-2924;
      (l) N. Singh, R. Singh, D.S. Raghuvanshi, et al., Org. Lett. 15 (2013) 5874-5877;
      (m) R. Singh, D.S. Raghuvanshi, K.N. Singh, Org. Lett. 15 (2013) 4202-4205.

    14. [14]

      (a) J.Y. Guo, R.X. Wu, J.K. Jin, et al., Org. Lett. 18 (2016) 3850-3853;
      (b) J.Y. Guo, R.H. Dai, W.C. Xu, et al., Chem. Commun. 45 (2018) 8980-8982;
      (c) K. Lu, Q. Li, X. Xi, et al., Org. Chem. Front. 5 (2018) 3088-3092.

    15. [15]

      (a) M. Lu, Z. Liu, J. Zhang, et al., Org. Biomol. Chem. 16 (2018) 6564-6568;
      (b) L. Zheng, C. Yang, Z. Xu, et al., J. Org. Chem. 80 (2015) 5730-5736;
      (c) L. Zhang, Z. Li, Z.Q. Liu, Org. Lett. 16 (2014) 3688-3691.

    16. [16]

      (a) J. Guo, C. Xu, L. Wang, et al., Org. Biomol. Chem. 17 (2019) 4593-4599;
      (b) Z. Yang, A. Tang, Synlett 30 (2019) 1061-1066;
      (c) Z. Yang, Y. Cheng, J. Long, et al., New. J. Chem. 43 (2019) 18760-18766.

    17. [17]

      Y.Y. Jiang, G.Y. Dou, K. Xu, et al., Org. Chem. Front. 5(2018) 2573-2577.  doi: 10.1039/C8QO00645H

    18. [18]

      Z. Zhang, L. Zhang, Y. Cao, et al., Org. Lett. 21(2019) 762-766.  doi: 10.1021/acs.orglett.8b04010

    19. [19]

      Z. Ruan, Z. Huang, Z. Xu, et al., Org. Lett. 21(2019) 1237-1240.  doi: 10.1021/acs.orglett.9b00361

    20. [20]

      J.B. Hendrickson, D.D. Sternbach, J. Org. Chem. 40(1975) 3450-3452.  doi: 10.1021/jo00911a036

    21. [21]

      (a) P. Xiong, H.H. Xu, J. Song, et al., J. Am. Chem. Soc. 140 (2018) 2460-2464;
      (b) H.H. Xu, J. Song, H.C. Xu, ChemSusChem 12 (2019) 3060-3063.

    22. [22]

      J.B. Tommasino, A. Brondex, M. Médebielle, et al., Synlett 2002(2002) 1697-1699.

  • 加载中
    1. [1]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    2. [2]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    3. [3]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    4. [4]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    5. [5]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    6. [6]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    7. [7]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    8. [8]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    9. [9]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    10. [10]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    11. [11]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    12. [12]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    13. [13]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    16. [16]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    17. [17]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    18. [18]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    19. [19]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    20. [20]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

Metrics
  • PDF Downloads(19)
  • Abstract views(1378)
  • HTML views(447)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return