Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications
-
* Corresponding authors.
E-mail addresses: li.shisheng@nims.go.jp (S. Li), chaoltan@cityu.edu.hk (C. Tan).
Citation:
Haoxin Huang, Jiajia Zha, Shisheng Li, Chaoliang Tan. Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications[J]. Chinese Chemical Letters,
;2022, 33(1): 163-176.
doi:
10.1016/j.cclet.2021.06.004
C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225–6331.
doi: 10.1021/acs.chemrev.6b00558
C. Tan, H. Zhang, Chem. Soc. Rev. 44 (2015) 2713–2731.
doi: 10.1039/C4CS00182F
Y. Ge, Z. Shi, C. Tan, et al., Chem 6 (2020) 1237–1253.
doi: 10.1016/j.chempr.2020.04.004
A. Chaturvedi, B. Chen, K. Zhang, et al., SmartMat 1 (2020) e1011.
Y. Chen, C. Tan, H. Zhang, et al., Chem. Soc. Rev. 44 (2015) 2681–2701.
doi: 10.1039/C4CS00300D
Z. Zhou, B. Li, C. Shen, et al., Small 16 (2020) 2004173.
doi: 10.1002/smll.202004173
G. Wang, C. Hou, H. Long, et al., Acta Phys. Chim. Sin. 35 (2019) 1319–1340.
doi: 10.3866/pku.whxb201903010
X. Qian, J. Liu, L. Fu, et al., Science 346 (2014) 1344–1347.
doi: 10.1126/science.1256815
E. Sajadi, T. Palomaki, Z. Fei, et al., Science 362 (2018) 922–925.
doi: 10.1126/science.aar4426
C.H. Sharma, A.P. Surendran, S.S. Varma, et al., Commun. Phys. 1 (2018) 90.
doi: 10.1038/s42005-018-0091-7
Y. Saito, T. Nojima, Y. Iwasa, et al., Nat. Rev. Mater. 2 (2016) 16094.
A. Arora, R. Schmidt, R. Schneider, et al., Nano Lett. 16 (2016) 3624–3629.
doi: 10.1021/acs.nanolett.6b00748
P. Nagler, M.V. Ballottin, A.A. Mitioglu, et al., Nat. Commun. 8 (2017) 1551.
doi: 10.1038/s41467-017-01748-1
L. Majidi, P. Yasaei, R.E. Warburton, et al., Adv. Mater. 31 (2019) 1804453.
doi: 10.1002/adma.201804453
M. Asadi, M.H. Motevaselian, A. Moradzadeh, et al., Adv. Energy Mater. 9 (2019) 1803536.
doi: 10.1002/aenm.201803536
C. Jian, W. Hong, Q. Cai, et al., Appl. Catal. B 266 (2020) 118649.
doi: 10.1016/j.apcatb.2020.118649
Q. Fu, J. Han, X. Wang, et al., Adv. Mater. 33 (2021) 1907818.
doi: 10.1002/adma.201907818
C. Han, Z. Tian, H. Dou, et al., Chin. Chem. Lett. 29 (2018) 606–611.
doi: 10.1016/j.cclet.2018.01.017
Y. Liu, S. Zhu, Z. Gu, et al., Chin. Chem. Lett. (2021).
doi: 10.1016/j.cclet.2021.04.023
J. Liu, W. Peng, Y. Li, et al., Trans. Tianjin Univ. 26 (2020) 149–171.
doi: 10.1007/s12209-020-00235-x
Y. Ling, Q. Ma, Y. Yu, et al., Trans. Tianjin Univ. 27 (2021) 180–200.
doi: 10.1007/s12209-021-00283-x
B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6 (2011) 147–150.
doi: 10.1038/nnano.2010.279
W. Cao, J. Kang, D. Sarkar, et al., IEEE Int. Electron Devices Meet. 2014 pp. 30.35.31-30.35.34.
A. Sebastian, R. Pendurthi, T.H. Choudhury, et al., Nat. Commun. 12 (2021) 693.
doi: 10.1038/s41467-020-20732-w
M. Chhowalla, H.S. Shin, G. Eda, et al., Nat. Chem. 5 (2013) 263–275.
doi: 10.1038/nchem.1589
T. Cao, G. Wang, W. Han, et al., Nat. Commun. 3 (2012) 887.
doi: 10.1038/ncomms1882
H. Zeng, J. Dai, W. Yao, et al., Nat. Nanotechnol. 7 (2012) 490–493.
doi: 10.1038/nnano.2012.95
S. Wang, A. Robertson, J.H. Warner, et al., Chem. Soc. Rev. 47 (2018) 6764–6794.
doi: 10.1039/c8cs00236c
Z. Hu, Z. Wu, C. Han, et al., Chem. Soc. Rev. 47 (2018) 3100–3128.
doi: 10.1039/c8cs00024g
Y. Feng, L. Ding, D. Ji, et al., Chin. Chem. Lett. 29 (2018) 892–894.
doi: 10.1016/j.cclet.2018.01.053
M. Wang, W. Wang, Y. Zhang, et al., Chin. Chem. Lett. (2021).
doi: 10.1016/j.cclet.2021.09.046
X. Hu, Z. Hemmat, L. Majidi, et al., Small 16 (2020) 1905892.
doi: 10.1002/smll.201905892
L.M. Xie, Nanoscale 7 (2015) 18392–18401.
doi: 10.1039/C5NR05712D
W. Zhang, X. Li, T. Jiang, et al., Nanoscale 7 (2015) 13554–13560.
doi: 10.1039/C5NR02515J
X. Liu, J. Wu, W. Yu, et al., Adv. Funct. Mater. 27 (2017) 1606469.
doi: 10.1002/adfm.201606469
W. Wen, Y. Zhu, X. Liu, et al., Small 13 (2017) 1603788.
doi: 10.1002/smll.201603788
P. Yu, J. Lin, L. Sun, et al., Adv. Mater. 29 (2017) 1603991.
doi: 10.1002/adma.201603991
Q. Deng, X. Li, H. Si, et al., Adv. Funct. Mater. 30 (2020) 2003264.
doi: 10.1002/adfm.202003264
P. Kang, H. Nan, X. Zhang, et al., Adv. Opt. Mater. 8 (2020) 1901415.
doi: 10.1002/adom.201901415
Z. Hemmat, J. Cavin, A. Ahmadiparidari, et al., Adv. Mater. 32 (2020) 1907041.
doi: 10.1002/adma.201907041
S. Li, J. Hong, B. Gao, et al., Adv. Sci. 8 (2021) 2004438.
doi: 10.1002/advs.202004438
F. Raffone, C. Ataca, J.C. Grossman, et al., J. Phys. Chem. Lett. 7 (2016) 2304–2309.
doi: 10.1021/acs.jpclett.6b00794
I.H. Kwak, I.S. Kwon, T.T. Debela, et al., ACS Nano 14 (2020) 11995–12005.
doi: 10.1021/acsnano.0c05159
Z. Wang, X. Zhao, Y. Yang, et al., Small 16 (2020) 2000852.
doi: 10.1002/smll.202000852
A. Kutana, E.S. Penev, B.I. Yakobson, et al., Nanoscale 6 (2014) 5820–5825.
doi: 10.1039/C4NR00177J
E. Revolinsky, D. Beerntsen, J. Appl. Phys. 35 (1964) 2086–2089.
doi: 10.1063/1.1702795
V. Popescu, A. Zunger, Phys. Rev. Lett. 104 (2010) 236403.
doi: 10.1103/PhysRevLett.104.236403
M.K. Agarwal, P.D. Patel, L.T. Talele, et al., Phys. Status Solidi A 90 (1985) K107–K111.
doi: 10.1002/pssa.2210900167
X. Duan, C. Wang, Z. Fan, et al., Nano Lett. 16 (2016) 264–269.
doi: 10.1021/acs.nanolett.5b03662
Y. Chen, Z. Lai, X. Zhang, et al., Nat. Rev. Chem. 4 (2020) 243–256.
doi: 10.1038/s41570-020-0173-4
Z. Wang, Y. Shen, Y. Ito, et al., ACS Nano 12 (2018) 1571–1579.
doi: 10.1021/acsnano.7b08149
V. Murugan, K. Meganathan, N.B. Shinde, et al., Appl. Phys. Lett. 118 (2021) 013102.
doi: 10.1063/5.0022790
S. Susarla, P. Manimunda, Y.M. Jaques, et al., Adv. Mater. Interfaces 6 (2019) 1801262.
doi: 10.1002/admi.201801262
C. Tan, Z. Luo, A. Chaturvedi, et al., Adv. Mater. 30 (2018) 1705509.
doi: 10.1002/adma.201705509
Q. Gong, L. Cheng, C. Liu, et al., ACS Catal. 5 (2015) 2213–2219.
doi: 10.1021/cs501970w
D. Voiry, A. Mohite, M. Chhowalla, et al., Chem. Soc. Rev. 44 (2015) 2702–2712.
doi: 10.1039/C5CS00151J
R. Kappera, D. Voiry, S.E. Yalcin, et al., Nat. Mater. 13 (2014) 1128–1134.
doi: 10.1038/nmat4080
J. Shi, P. Yu, F. Liu, et al., Adv. Mater. 29 (2017) 1701486.
doi: 10.1002/adma.201701486
H. Lin, Q. Zhu, D. Shu, et al., Nat. Mater. 18 (2019) 602–607.
doi: 10.1038/s41563-019-0321-8
C. Guo, J. Pan, H. Li, et al., J. Mater. Chem. C 5 (2017) 10855–10860.
doi: 10.1039/C7TC03749J
Y. Yu, G.H. Nam, Q. He, et al., Nat. Chem. 10 (2018) 638–643.
doi: 10.1038/s41557-018-0035-6
Z. Lai, Q. He, T.H. Tran, et al., Nat. Mater. (2021) doi.org/10.1038/s41563-021-00971-y.
doi: 10.1038/s41563-021-00971-y
Y. Chen, D.O. Dumcenco, Y. Zhu, et al., Nanoscale 6 (2014) 2833–2839.
doi: 10.1039/C3NR05630A
H. Li, X. Duan, X. Wu, et al., J. Am. Chem. Soc. 136 (2014) 3756–3759.
doi: 10.1021/ja500069b
B. Tang, J. Zhou, P. Sun, et al., Adv. Mater. 31 (2019) 1900862.
doi: 10.1002/adma.201900862
M.S. Sokolikova, C. Mattevi, Chem. Soc. Rev. 49 (2020) 3952–3980.
doi: 10.1039/d0cs00143k
P. Schmidt, M. Binnewies, R. Glaum, et al., Adv. Top. Cryst. Growth 227-306.
D.O. Dumcenco, H. Kobayashi, Z. Liu, et al., Nat. Commun. 4 (2013) 1351.
doi: 10.1038/ncomms2351
Y. Chen, J. Xi, D.O. Dumcenco, et al., ACS Nano 7 (2013) 4610–4616.
doi: 10.1021/nn401420h
W.J. Yin, X.G. Gong, S.H. Wei, Phys. Rev. B 78 (2008) 161203.
doi: 10.1103/PhysRevB.78.161203
J. Kang, S. Tongay, J. Li, et al., J. Appl. Phys. 113 (2013) 143703.
doi: 10.1063/1.4799126
Y. Chen, W. Wen, Y. Zhu, et al., Nanotechnol. 27 (2016) 445705.
doi: 10.1088/0957-4484/27/44/445705
S.D. Karande, N. Kaushik, D.S. Narang, et al., Appl. Phys. Lett. 109 (2016) 142101.
doi: 10.1063/1.4964289
J. Jadczak, D.O. Dumcenco, Y.S. Huang, et al., J. Appl. Phys. 116 (2014) 193505.
doi: 10.1063/1.4901994
Q. Zhang, L. Mei, X. Cao, et al., J. Mater. Chem. A 8 (2020) 15417–15444.
doi: 10.1039/d0ta03727c
C. Tan, W. Zhao, A. Chaturvedi, et al., Small 12 (2016) 1866–1874.
doi: 10.1002/smll.201600014
V. Kiran, D. Mukherjee, R.N. Jenjeti, et al., Nanoscale 6 (2014) 12856–12863.
doi: 10.1039/C4NR03716B
C. Tan, L. Zhao, P. Yu, et al., Angew. Chem., Int. Ed. 56 (2017) 7842–7846.
doi: 10.1002/anie.201703597
J. Park, M.S. Kim, B. Park, et al., ACS Nano 12 (2018) 6301–6309.
doi: 10.1021/acsnano.8b03408
Y. Gong, Z. Liu, A.R. Lupini, et al., Nano Lett. 14 (2014) 442–449.
doi: 10.1021/nl4032296
Q. Feng, N. Mao, J. Wu, et al., ACS Nano 9 (2015) 7450–7455.
doi: 10.1021/acsnano.5b02506
Q. Fu, L. Yang, W. Wang, et al., Adv. Mater. 27 (2015) 4732–4738.
doi: 10.1002/adma.201500368
S. Susarla, A. Kutana, J.A. Hachtel, et al., Adv. Mater. 29 (2017) 1702457.
doi: 10.1002/adma.201702457
S. Wang, Y. Rong, Y. Fan, et al., Chem. Mater. 26 (2014) 6371–6379.
doi: 10.1021/cm5025662
H. Li, Q. Zhang, X. Duan, et al., J. Am. Chem. Soc. 137 (2015) 5284–5287.
doi: 10.1021/jacs.5b01594
H. Liu, K.K.A. Antwi, S. Chua, et al., Nanoscale 6 (2014) 624–629.
doi: 10.1039/C3NR04515C
X. Zhang, H. Nan, S. Xiao, et al., Nat. Commun. 10 (2019) 598.
doi: 10.1038/s41467-019-08468-8
Q. Feng, Y. Zhu, J. Hong, et al., Adv. Mater. 26 (2014) 2648–2653.
doi: 10.1002/adma.201306095
Y. Liu, C. Xiao, Z. Li, et al., Adv. Energy Mater. 6 (2016) 1600436.
doi: 10.1002/aenm.201600436
Y.Y. Sun, K. Fujisawa, Z. Lin, et al., J. Am. Chem. Soc. 139 (2017) 11096–11105.
doi: 10.1021/jacs.7b04443
K. Yang, X. Wang, H. Li, et al., Nanoscale 9 (2017) 5102–5109.
doi: 10.1039/C7NR01015J
J. Xu, X. Li, W. Liu, et al., Angew. Chem. Int. Ed. 56 (2017) 9121–9125.
doi: 10.1002/anie.201704928
H. He, D. Huang, Q. Gan, et al., ACS Nano 13 (2019) 11843–11852.
doi: 10.1021/acsnano.9b05865
J. Yao, Z. Zheng, G. Yang, et al., ACS Appl. Mater. Interfaces 8 (2016) 12915–12924.
doi: 10.1021/acsami.6b03691
L. Zhang, T. Yang, X. He, et al., ACS Nano 14 (2020) 11140–11149.
doi: 10.1021/acsnano.0c02124
Y. Liu, X. Duan, H.J. Shin, et al., Nature 591 (2021) 43–53.
doi: 10.1038/s41586-021-03339-z
H.J. Chuang, B. Chamlagain, M. Koehler, et al., Nano Lett. 16 (2016) 1896–1902.
doi: 10.1021/acs.nanolett.5b05066
H. Gao, J. Suh, M.C. Cao, et al., Nano Lett. 20 (2020) 4095–4101.
doi: 10.1021/acs.nanolett.9b05247
L. Cheng, C. Zhang, Y. Liu, et al., Appl. Phys. Lett. 125 (2020) 177701.
doi: 10.1103/PhysRevLett.125.177701
S. Adachi, Phys. Today47(1994) 99–100.
doi: 10.1063/1.2808406
F. Cui, Q. Feng, J. Hong, et al., Adv. Mater. 29 (2017) 1705015.
doi: 10.1002/adma.201705015
C. Tan, M. Amani, C. Zhao, et al., Adv. Mater. 32 (2020) 2001329.
doi: 10.1002/adma.202001329
K. Hou, Z. Huang, S. Liu, et al., Nanoscale Adv. 2 (2020) 2185–2191.
doi: 10.1039/d0na00202j
J. Fang, Z. Zhou, M. Xiao, et al., InfoMat 2 (2020) 291–317.
doi: 10.1002/inf2.12067
J. Li, Y. Ding, D. Zhang, et al., Acta Phys. Chim. Sin. 35 (2019) 1058–1077.
doi: 10.3866/pku.whxb201812020
V. Klee, E. Preciado, D. Barroso, et al., Nano Lett. 15 (2015) 2612–2619.
doi: 10.1021/acs.nanolett.5b00190
Y.R. Lim, J.K. Han, Y. Yoon, et al., Adv. Mater. 31 (2019) 1901405.
doi: 10.1002/adma.201901405
D.A. Nguyen, T.S. Le, D.Y. Park, et al., ACS Appl. Mater. Interfaces 11 (2019) 37550–37558.
doi: 10.1021/acsami.9b10383
F. Wang, J. Li, F. Wang, et al., Adv. Funct. Mater. 25 (2015) 6077–6083.
doi: 10.1002/adfm.201502680
G. Cai, L. Peng, S. Ye, et al., J. Mater. Chem. A 7 (2019) 9837–9843.
doi: 10.1039/c8ta11583d
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Manoj Kumar Sarangi , L․D Patel , Goutam Rath , Sitansu Sekhar Nanda , Dong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Gu Gong , Mengzhu Li , Ning Sun , Ting Zhi , Yuhao He , Junan Pan , Yuntao Cai , Longlu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Haijiang Gong , Qingtan Zeng , Shili Gai , Yaqian Du , Jing Zhang , Qingyu Wang , He Ding , Lichun Wu , Anees Ahmad Ansari , Piaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Salim Ullah , Jianliang Shen , Hong-Tao Xu . Innovative self-healing conductive organogel: Pioneering the future of electronics. Chinese Chemical Letters, 2025, 36(3): 110553-. doi: 10.1016/j.cclet.2024.110553
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Fengshun Wang , Huachao Ji , Zefei Wu , Kang Chen , Wenqi Gao , Chen Wang , Longlu Wang , Jianmei Chen , Dafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320