CoCo-PBA/tetrabutylammonium bromide as highly efficient catalyst for CO2 and epoxides coupling reaction under mild conditions
-
* Corresponding author.
E-mail address: xhzhang@zju.edu.cn (X. Zhang).
Citation: Munir Ullah Khan, Safir Ullah Khan, Jiraya Kiriratnikom, Shah Zareen, Xinghong Zhang. CoCo-PBA/tetrabutylammonium bromide as highly efficient catalyst for CO2 and epoxides coupling reaction under mild conditions[J]. Chinese Chemical Letters, ;2022, 33(2): 1081-1086. doi: 10.1016/j.cclet.2021.06.002
C. Song, Catal. Today. 115 (2006) 2-32.
doi: 10.1016/j.cattod.2006.02.029
S. Chu, Science 325 (2009) 1599-1599.
doi: 10.1126/science.1181637
N. MacDowell, N. Florin, A. Buchard, et al., Energy Environ. Sci. 3 (2010) 1645-1669.
doi: 10.1039/c004106h
S. Choi, J.H. Drese, C.W. Jones, Chem. Sustain. Energy Mater. 2 (2009) 796-854.
doi: 10.1002/cssc.200900036
M.U. Khan, L. Wang, Z. Liu, et al., Angew. Chem. Int. Ed. 55 (2016) 9548-9552.
doi: 10.1002/anie.201602512
Q. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Angew. Chem. Int. Ed. 58 (2019) 3511-3515.
doi: 10.1002/anie.201813494
X. Jiang, X. Nie, X. Guo, et al., Chem. Rev. 120 (2020) 7984-8034.
doi: 10.1021/acs.chemrev.9b00723
I. Omae, Coord. Chem. Rev. 256 (2012) 1384-1405.
doi: 10.1016/j.ccr.2012.03.017
T. Zheng, K. Jiang, H. Wang, Adv. Mater. 30 (2018) 1802066.
doi: 10.1002/adma.201802066
K. Li, B. Peng, T. Peng, ACS Catal. 6 (2016) 7485-7527.
doi: 10.1021/acscatal.6b02089
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783-2828.
doi: 10.1039/c8cs00829a
H. Hu, D. Zhang, H. Liu, et al., Chin. Chem. Lett. 32 (2021) 557-560.
doi: 10.1016/j.cclet.2020.02.028
P. Jing, B. Wu, Z. Han, et al., Chin. Chem. Lett. 32 (2021) 3505-3508.
doi: 10.1016/j.cclet.2021.04.007
T. Jiang, X. Ma, Y. Zhou, et al., Green Chem. 10 (2008) 465-469.
doi: 10.1039/b717868a
G. Fiorani, A. Perosa, M. Selva, Green Chem. 20 (2018) 288-322.
doi: 10.1039/C7GC02118F
X.B. Lu, D.J. Darensbourg, Chem. Soc. Rev. 41 (2012) 1462-1484.
doi: 10.1039/C1CS15142H
T.K. Pal, D. De, P.K. Bharadwaj, Coord. Chem. Rev. 408 (2020) 213173.
doi: 10.1016/j.ccr.2019.213173
J. Liu, C. Chen, K. Zhang, et al., Chin. Chem. Lett. 32 (2021) 649-659.
doi: 10.1016/j.cclet.2020.07.040
J. Liu, G. Yang, Y. Liu, et al., Green Chem. 22 (2020) 4509-4515.
doi: 10.1039/d0gc00458h
B.H. Xu, J.Q. Wang, J. Sun, et al., Green Chem. 17 (2015) 108-122.
doi: 10.1039/C4GC01754D
C. Maeda, T. Taniguchi, K. Ogawa, et al., Angew. Chem. Int. Ed. 54 (2015) 134-138.
doi: 10.1002/anie.201409729
A. Decortes, A.M. Castilla, A.W. Kleij, Angew. Chem. Int. Ed. 49 (2010) 9822-9837.
doi: 10.1002/anie.201002087
M.H. Beyzavi, R.C. Klet, S. Tussupbayev, et al., J. Am. Chem. Soc. 136 (2014) 15861-15864.
doi: 10.1021/ja508626n
K. Huang, J.Y. Zhang, F. Liu, et al., ACS Catal. 8 (2018) 9079-9102.
doi: 10.1021/acscatal.8b02151
G. Ji, Z. Yang, H. Zhang, et al., Angew. Chem. 128 (2016) 9837-9841.
doi: 10.1002/ange.201602667
D. Liu, G. Li, J. Liu, et al., ACS Appl. Mater. Interfaces 10 (2018) 22119-22129.
doi: 10.1021/acsami.8b04759
A. Simonov, T. De Baerdemaeker, H.L.B. Boström, et al., Nature 578 (2020) 256-260.
doi: 10.1038/s41586-020-1980-y
L. Hu, P. Zhang, Q. Chen, et al., RSC Adv. 1 (2011) 1574-1578.
doi: 10.1039/c1ra00624j
S.S. Kaye, J.R. Long, J. Am. Chem. Soc. 127 (2005) 6506-6507.
doi: 10.1021/ja051168t
H. Yi, R. Qin, S. Ding, et al., Adv. Funct. Mater. 31 (2021) 2006970.
doi: 10.1002/adfm.202006970
L. Deng, Z. Yang, L. Tan, et al., Adv. Mater. 30 (2018) 1802510.
doi: 10.1002/adma.201802510
P.Y. Tang, L.J. Han, F.S. Hegner, et al., Adv. Energy Mater. 9 (2019) 1901836.
doi: 10.1002/aenm.201901836
L. Yan, Y. Liu, K. Zha, et al., ACS Appl. Mater. Interfaces 9 (2017) 2581-2593.
doi: 10.1021/acsami.6b15527
R.J. Wei, X.H. Zhang, B.Y. et al., J. Mol. Catal. A 379 (2013) 38-45.
doi: 10.1016/j.molcata.2013.07.014
X.H. Zhang, S. Chen, X.M. Wu, et al., Chin. Chem. Lett. 18 (2007) 887-890.
doi: 10.1016/j.cclet.2007.05.017
M. Cao, X. Wu, X. He, C. Hu, Chem. Commun. (2005) 2241-2243.
doi: 10.1039/b500153f
L. Hu, J. Mei, Q. Chen, et al., Nanoscale 3 (2011) 4270-4274.
doi: 10.1039/c1nr10506j
D.H.M. Buchold, C. Feldmann, Chem. Mater. 19 (2007) 3376-3380.
doi: 10.1021/cm0628808
D.F. Shriver, D.B. Brown, Inorg. Chem. 8 (1969) 42-46.
doi: 10.1021/ic50071a010
H. Zhang, C. Li, D. Chen, et al., Cryst. Eng. Comm. 19 (2017) 2057-2064.
doi: 10.1039/C7CE00384F
H.Y. Tang, Z. Chu, C.P. Li, et al., Dalton. Trans. 45 (2016) 10249-10255.
doi: 10.1039/C6DT01612J
M. Tada, Y. Iwasawa, Chem. Commun. (2006) 2833-2844.
doi: 10.1039/b601507g
E.L. Margelefsky, R.K. Zeidan, M.E. Davis, Chem. Soc. Rev. 37 (2008) 1118-1126.
doi: 10.1039/b710334b
T. Bürgi, A. Baiker, Acc. Chem. Res. 37 (2004) 909-917.
doi: 10.1021/ar040072l
M. Hudlicky, in: Reductions in Organic Chemistry, Ellis Horwood Chichester, 1984, pp. 46-53.
C.A. Schoenbaum, D.K. Schwartz, J.W. Medlin, Acc. Chem. Res. 47 (2014) 1438-1445.
doi: 10.1021/ar500029y
S.H. Pang, C.A. Schoenbaum, D.K. Schwartz, J.W. Medlin, Nat. Commun. 4 (2013) 1-6.
doi: 10.1109/SECON.2013.6567445
J. Luo, X. Zhang, C. Zhang, et al., Chin. Chem. Lett. 30 (2019) 2043-2046.
doi: 10.1016/j.cclet.2019.05.034
E. Gross, J.H.C. Liu, F.D. Toste, Nat. Chem. 4 (2012) 947–952.
doi: 10.1038/nchem.1465
H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 131 (2009) 7086-7093.
doi: 10.1021/ja810045y
X.R. Wang, H.M. Cheng, X.W. Gao, et al., Chin. Chem. Lett. 30 (2019) 919-923.
doi: 10.1016/j.cclet.2019.03.050
J.T. Kloprogge, R.L. Frost, J. Solid State Chem. 146 (1999) 506-515.
doi: 10.1006/jssc.1999.8413
J. Lejeune, J.B. Brubach, P. Roy, A. Bleuzen, Comptes Rendus Chim. 17 (2014) 534-540.
doi: 10.1016/j.crci.2014.01.017
L. Gao, C. Wang, R. Li, et al., Nanoscale 8 (2016) 8355-8362.
doi: 10.1039/C6NR00575F
C.L.C. Carvalho, A.T.B. Silva, R.A.S. Luz, et al., ACS Appl. Nano Mater. 1 (2018) 4283-4293.
doi: 10.1021/acsanm.8b01106
X. Wang, L. Lu, B. Wang, et al., Adv. Funct. Mater. 28 (2018) 1804191.
doi: 10.1002/adfm.201804191
M. Chen, Y. Wu, Y. Han, et al., ACS Appl. Mater. Inter. 7 (2015) 21852-21859.
doi: 10.1021/acsami.5b06195
W.Y. Gao, Y. Chen, Y. Niu, et al., Angew. Chem. Int. Ed. 53 (2014) 2615-2619.
doi: 10.1002/anie.201309778
Q. Yang, C.C. Yang, C.H. Lin, H.L. Jiang, Angew. Chem. Int. Ed. 58 (2019) 3511-3515.
doi: 10.1002/anie.201813494
W.Y. Gao, L. Wojtas, S. Ma, Chem. Commun. 50 (2014) 5316-5318.
doi: 10.1039/C3CC47542E
G. Si, X. Kong, T. He, et al., Chin. Chem. Lett. 32 (2021) 918-922.
doi: 10.1016/j.cclet.2020.07.023
A. Corma, H. Garcia, F.X. Xamena, Chem. Rev. 110 (2010) 4606-4655.
doi: 10.1021/cr9003924
C. Zhu, G. Yuan, X. Chen, Z. Yang, Y. Cui, J. Am. Chem. Soc. 134 (2012) 8058-8061.
doi: 10.1021/ja302340b
S. Horike, M. Dinca, K. Tamaki, J.R. Long, J. Am. Chem. Soc. 130 (2008) 5854-5855.
doi: 10.1021/ja800669j
Y. Chen, V. Lykourinou, T. Hoang, et al., Inorg. Chem. 51 (2012) 9156-9158.
doi: 10.1021/ic301280n
Y. Wang, S. Li, Y. Yang, et al., Chem. Commun. 55 (2019) 6942-6945.
doi: 10.1039/c9cc03052b
A. Samikannu, L.J. Konwar, P. Mäki-Arvela, et al., Appl. Catal. B 241 (2019) 41-51.
doi: 10.1016/j.apcatb.2018.09.019
Ruiying Liu , Li Zhao , Baishan Liu , Jiayuan Yu , Yujie Wang , Wanqiang Yu , Di Xin , Chaoqiong Fang , Xuchuan Jiang , Riming Hu , Hong Liu , Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332
Heng Yang , Zhijie Zhou , Conghui Tang , Feng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Hanqing Zhang , Xiaoxia Wang , Chen Chen , Xianfeng Yang , Chungli Dong , Yucheng Huang , Xiaoliang Zhao , Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064