A general strategy via photoelectrocatalytic oxygen reduction for generating singlet oxygen with carbon bridged carbon-nitride electrode
-
* Corresponding author.
E-mail address: hyzhao@tongji.edu.cn (H. Zhao).
Citation: Qianqian Yang, Zhiyuan Feng, Mingyue Liu, Jinxing Zhang, Hongying Zhao, Guohua Zhao. A general strategy via photoelectrocatalytic oxygen reduction for generating singlet oxygen with carbon bridged carbon-nitride electrode[J]. Chinese Chemical Letters, ;2021, 32(11): 3393-3397. doi: 10.1016/j.cclet.2021.05.066
Y. Gao, Z. Chen, Y. Zhu, T. Li, C. Hu, Environ. Sci. Technol. 54(2020) 1232-1241.
doi: 10.1021/acs.est.9b05856
H. Wang, J. Zhang, P. Wang, et al., Chin. Chem. Lett. 31(2020) 2789-2794.
doi: 10.1016/j.cclet.2020.07.043
S. Liu, M. Zhao, Z. He, et al., Chin. J. Catal. 40(2019) 446-457.
doi: 10.1016/S1872-2067(18)63186-9
Y. Zhao, M. Sun, X. Wang, et al., Nat. Commun. 11(2020) 6228.
doi: 10.1038/s41467-020-20071-w
J.A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, et al., Appl. Catal. B: Environ. 88(2009) 398-406.
doi: 10.1016/j.apcatb.2008.10.025
S.Y. Dong, Y.L. Zhao, J.Y. Yang, et al., Appl. Catal. B: Environ. 291(2021) 120127.
doi: 10.1016/j.apcatb.2021.120127
D. García-Fresnadillo, ChemPhotoChem. 2(2018) 512-534.
doi: 10.1002/cptc.201800062
F. Yang, X. Chu, J. Sun, et al., Chin. Chem. Lett. 31(2020) 2784-2788.
doi: 10.1016/j.cclet.2020.07.033
Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117(2017) 11302-11336.
doi: 10.1021/acs.chemrev.7b00161
D. Pan, S. Xiao, X. Chen, et al., Environ. Sci. Technol. 53(2019) 3697-3706.
doi: 10.1021/acs.est.8b05685
S. Zhao, X. Zhao, Appl. Catal. B: Environ. 250(2019) 408-418.
doi: 10.1016/j.apcatb.2019.02.031
H. Zhan, Y. Wang, X. Mi, et al., Chin. Chem. Lett. 31(2020) 2843-2848.
doi: 10.1016/j.cclet.2020.08.015
G.H. Dong, K. Zhao, L.Z. Zhang, Chem. Commun. 48(2012) 6178-6180.
doi: 10.1039/c2cc32181e
Q. Hao, C. a. Xie, Y. Huang, et al., Chin. J. Catal. 41(2020) 249-258.
doi: 10.1016/S1872-2067(19)63450-9
J. Xiong, X.B. Li, J.T. Huang, et al., Appl. Catal. B: Environ. 266(2020) 118602.
doi: 10.1016/j.apcatb.2020.118602
X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8(2009) 76-80.
doi: 10.1038/nmat2317
D. Chen, K. Wang, W. Hong, et al., Appl. Catal. B: Environ. 166-167(2015) 366-373.
D. Chen, K. Wang, D. Xiang, et al., Appl. Catal. B: Environ. 147(2014) 554-561.
doi: 10.1016/j.apcatb.2013.09.039
S.Y. Dong, L.F. Cui, Y.J. Tian, et al., J. Hazard. Mater. 399(2020) 123017.
doi: 10.1016/j.jhazmat.2020.123017
H. Li, F. Li, Z. Wang, et al., Appl. Catal. B: Environ. 229(2018) 114-120.
doi: 10.1016/j.apcatb.2018.02.026
Z.H. Li, D.L. Huang, C.Y. Zhou, et al., Chem. Eng. J. 382(2020) 122657.
doi: 10.1016/j.cej.2019.122657
Q. Zheng, E. Xu, E. Park, H. Chen, D. Shuai, Appl. Catal. B: Environ. 240(2019) 262-269.
doi: 10.1016/j.apcatb.2018.09.012
S. Wu, H. Yu, S. Chen, X. Quan, ACS. Catal. 10(2020) 14380-14389.
doi: 10.1021/acscatal.0c03359
H. Yu, R. Shi, Y. Zhao, et al., Adv. Mater. 29(2017) 1605148.
doi: 10.1002/adma.201605148
Q. Liu, D. Zhu, M. Guo, Y. Yu, Y. Cao, Chin. Chem. Lett. 30(2019) 1639-1642.
doi: 10.1016/j.cclet.2019.05.058
M. Liu, D. Zhang, J. Han, et al., Chem. Eng. J. 382(2020) 123017.
doi: 10.1016/j.cej.2019.123017
M. Mohamed, M. Zain, L. Minggu, et al., Appl. Catal. B: Environ. 236(2018) 265-279.
doi: 10.1016/j.apcatb.2018.05.037
X.B. Li, B.B. Kang, F. Dong, et al., Nano Energy 81(2021) 105671.
doi: 10.1016/j.nanoen.2020.105671
Q. Zheng, D. Durkin, J. Elenewski, et al., Environ. Sci. Technol. 50(2016) 12938-12948.
doi: 10.1021/acs.est.6b02579
Z. Yang, J. Qian, A. Yu, B. Pan, Proc. Natl. Acad. Sci. U. S. A. 116(2019) 6659-6664.
doi: 10.1073/pnas.1819382116
J. Hu, P. Zhang, W. An, et al., Appl. Catal. B: Environ. 245(2019) 130-142.
doi: 10.1016/j.apcatb.2018.12.029
L.Q. Li, C. Tang, Y. Zheng, et al., Adv. Energy Mater. 10(2020) 2000789.
doi: 10.1002/aenm.202000789
J. Brame, M. Long, Q. Li, P. Alvarez, Water. Res. 60(2014) 259-266.
doi: 10.1016/j.watres.2014.05.005
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Jiqing Liu , Qi Dang , Liting Wang , Dejin Wang , Liang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277
Yulong Liu , Haoran Lu , Tong Yang , Peng Cheng , Xu Han , Wenyan Liang . Catalytic applications of amorphous alloys in wastewater treatment: A review on mechanisms, recent trends, challenges and future directions. Chinese Chemical Letters, 2024, 35(10): 109492-. doi: 10.1016/j.cclet.2024.109492
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539