Citation: Mingxuan Liu, Xiaoling Zhang, Sainan Chu, Yanyu Ge, Tao Huang, Yonghong Liu, Lei Yu. Selenization of cotton products with NaHSe endowing the antibacterial activities[J]. Chinese Chemical Letters, ;2022, 33(1): 205-208. doi: 10.1016/j.cclet.2021.05.061 shu

Selenization of cotton products with NaHSe endowing the antibacterial activities

    * Corresponding authors.
    E-mail addresses: yhliu@yzu.edu.cn (Y. Liu), yulei@yzu.edu.cn (L. Yu).
  • Received Date: 18 April 2021
    Revised Date: 27 May 2021
    Accepted Date: 27 May 2021
    Available Online: 1 June 2021

Figures(4)

  • Selenization reaction with the in situ prepared NaHSe has been successfully developed to occur in aqueous solution. The technique affords a method to upload the bioactive Se element on cotton products in semi-industrial scale. The antibacterial tests revealed that the selenized cotton possessed a potent and prolonged antimicrobial effect against both Gram-positive S. aureus and Gram-negative E. coli bacteria. This work discloses a practical method for preparing the selenium-containing antibacterial materials concisely and directly with industrial application potential.
  • 加载中
    1. [1]

      (a) Y. Wu, J. Chen, J. Ning, et al., Green Chem. 23 (2021) 3950-3954;
      (b) Y. Wu, J. Chen, H. Liao, et al., Green Synth. Catal. 2 (2021) 233-236;
      (c) J. Chen, H. Wu, Q. Gui, et al., Chin. J. Catal. 42 (2021) 1445-1450;
      (d) J. Chen, C. Zhong, Q. Gui, et al., Chin. Chem. Lett. 32 (2021) 475-479;
      (e) J. Jiang, F. Xiao, W. He, et al., Chin. Chem. Lett. 32 (2021) 1637-1644;
      (f) L. Lu, Z. Wang, W. Xia, et al., Chin. Chem. Lett. 30 (2019) 1237-1240;
      (g) C. Wu, L. Hong, H. Shu, et al., ACS Sustain. Chem. Eng. 7 (2019) 8798-8803;
      (h) Z. Cao, Q. Zhu, Y. Lin, et al., Chin. Chem. Lett. 30 (2019) 2132-2138;
      (i) M.X. Liu, Y.M. Li, L. Yu, et al., Sci. China Chem. 61 (2018) 294-299.

    2. [2]

      (a) L. Yu, H. Cao, X. Zhang, et al., Sustain. Energy Fuels 4 (2020) 730-736;
      (b) X. Zhao, L. Yin, Z. Yang, et al., J. Mater. Chem. A 7 (2019) 21774-21782;
      (c) K. Cao, X. Deng, T. Chen, et al., J. Mater. Chem. A 7 (2019) 10918-10923.

    3. [3]

      (a) C. Chen, Z. Cao, X. Zhang, et al., Chin. J. Chem. 38 (2020) 1045-1051;
      (b) C. Chen, Y. Cao, X. Wu, et al., Chin. Chem. Lett. 31 (2020) 1078-1082;
      (c) X. Deng, H. Cao, C. Chen, et al., Sci. Bull. 64 (2019) 1280-1284;
      (d) Y. Zheng, A. Wu, Y. Ke, et al., Chin. Chem. Lett. 30 (2019) 937-941.

    4. [4]

      (a) F.V. Singh, T. Wirth, Catal. Sci. Technol. 9 (2019) 1073-1091;
      (b) T. Prochnow, A. Maroneze, D.F. Back, et al., J. Org. Chem. 84 (2019) 2891-2900;
      (c) R. Guo, L. Liao, X. Zhao, Molecules 22 (2017) 835;
      (d) S. Kodama, T. Saeki, K. Mihara, et al., J. Org. Chem. 82 (2017) 12477-12484;
      (e) C. Santi, C. Tomassini, L. Sancineto, Chimia 71 (2017) 592-595;
      (f) S. Santoro, J.B. Azeredo, V. Nascimento, et al., RSC Adv. 4 (2014) 31521-31535;
      (g) L. Yu, Y. Wu, T. Chen, et al., Org. Lett. 15 (2013) 144-147;
      (h) D.M. Freudendahl, S. Santoro, S.A. Shahzad, et al., Angew. Chem. Int. Ed. 48 (2009) 8409-8411.

    5. [5]

      X. Song, Y. Chen, G. Zhao, et al., Carbohydr. Polym. 231(2020) 115689.  doi: 10.1016/j.carbpol.2019.115689

    6. [6]

      (a) X. Mao, P. Li, T. Li, et al., Chin. Chem. Lett. 31 (2020) 3276-3278;
      (b) H. Cao, Y. Yang, X. Chen, et al., Chin. Chem. Lett. 31 (2020) 1887-1889;
      (c) P.S. Sadalage, M.S. Nimbalkar, K.K.K. Sharma, et al., J. Colloid Interface Sci. 569 (2020) 346-357;
      (d) J. Yip, L. Liu, K.H. Wong, et al., J. Appl. Polym. Sci. 131 (2014) 40728.

    7. [7]

      (a) M.A. Beck, Proc. Nutr. Soc. 58 (1999) 707-711;
      (b) L. Yu, L. Sun, Y. Nan, et al., Biol. Trace Elem. Res. 141 (2011) 254-261.

    8. [8]

      M. Rayman, Lancet 379(2012) 1256-1268.  doi: 10.1016/S0140-6736(11)61452-9

    9. [9]

      US Pharmacopeial Convention (USP). USP < 232>Elemental Impurities-Limits. 40-NF 35, First Supplement, 2017.

    10. [10]

      J. Młochowski, H. Wójtowicz-Młochowska, Molecules 20(2015) 10205-10243.  doi: 10.3390/molecules200610205

    11. [11]

      F.C. Meotti, V.C. Borges, G. Zeni, et al., Toxicol. Lett. 143(2003) 9-16.  doi: 10.1016/S0378-4274(03)00090-0

    12. [12]

      X. Zhang, L. Liu, L. Huang, et al., Nanoscale 11(2019) 9468-9477.  doi: 10.1039/C9NR01284B

    13. [13]

      (a) S. Ruengdechawiwat, J. Siripitayananon, R. Molloy, et al., Int. J. Polym. Mater. Po. 65 (2016) 277-284;
      (b) Y. Wei, Y. Ji, L. Xiao, et al., Biomaterials 34 (2013) 2588-2599;
      (c) L. Zhang, W. Zhang, Y. Han, et al., Appl. Surf. Sci. 361 (2016) 141-149;
      (d) A.F. Leitão, M.A. Faria, A.M. Faustino, et al., Macromol. Biosci. 16 (2016) 139-150.

    14. [14]

      M.B. Faiz, R. Amal, C.P. Marquis, et al., Nanotoxicology 12(2018) 263-273.  doi: 10.1080/17435390.2018.1434910

    15. [15]

      Y. Wang, L. Yu, B. Zhu, et al., J. Mater. Chem. A 4(2016) 10828-10833.  doi: 10.1039/C6TA02566H

    16. [16]

      (a) X. Jing, C. Chen, X. Deng, et al., Appl. Organomet. Chem. 32 (2018) e4332;
      (b) Y. Yang, X. Fan, H. Cao, et al., Catal. Sci. Technol. 8 (2018) 5017-5023;
      (c) S. Chu, H. Cao, T. Chen, et al., Catal. Commun. 129 (2019) 105730;
      (d) C. Liu, J. Mao, X. Zhang, et al., Catal. Commun. 133 (2020) 105828;
      (e) W. Zhou, P. Li, J. Liu, et al., Ind. Eng. Chem. Res. 59 (2020) 1025-1029;
      (f) H. Cao, R. Ma, S. Chu, et al., Chin. Chem. Lett. 32 (2021) 2761-2764;
      (g) X. Xiao, Z. Shao, L. Yu, Chin. Chem. Lett. 32 (2021) 2933-2938.

    17. [17]

      S. Nam, M.B. Hillyer, B.D. Condon, Carbohydr. Polym. 228(2020) 115374.  doi: 10.1016/j.carbpol.2019.115374

    18. [18]

      (a) K. Sohlberg, T.J. Pennycook, W. Zhou, et al., Phys. Chem. Chem. Phys. 17 (2015) 3982-4006;
      (b) A. Genc, L. Kovarik, M. Gu, et al., Ultramicroscopy 131 (2013) 24-32;
      (c) S.J. Pennycook, Ultramicroscopy 123 (2012) 28-37.

    19. [19]

      B. Żołnowska, J. Sławiński, K. Garbacz, et al., Int. J. Mol. Sci. 21(2019) 210.  doi: 10.3390/ijms21010210

    20. [20]

      (a) H. Zhang, M. Han, C. Yang, et al., Chin. Chem. Lett. 30 (2019) 263-265;
      (b) S. Peng, Y. Song, J. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (c) L. Xie, S. Peng, J. Tan, et al., ACS Sustain. Chem. Eng. 6 (2018) 16976-16981;
      (d) L. Xie, Y. Li, J. Ou, et al., Green Chem. 19 (2017) 5642-5646.

  • 加载中
    1. [1]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    2. [2]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    3. [3]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    6. [6]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    7. [7]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    8. [8]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    9. [9]

      Wei SuXiaoyan LuoPeiyuan LiYing ZhangChenxiang LinKang WangJianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522

    10. [10]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    11. [11]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    14. [14]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    15. [15]

      Yue RenKang LiYi-Zi WangShao-Peng ZhaoShu-Min PanHaojie FuMengfan JingYaming WangFengyuan YangChuntai Liu . Swelling and erosion assisted sustained release of tea polyphenol from antibacterial ultrahigh molecular weight polyethylene for joint replacement. Chinese Chemical Letters, 2025, 36(2): 110468-. doi: 10.1016/j.cclet.2024.110468

    16. [16]

      Lingfeng ZhengChengyuan LvWenlin CaiQingze PanZuokai WangWenkai LiuJiangli FanXiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    19. [19]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    20. [20]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

Metrics
  • PDF Downloads(9)
  • Abstract views(559)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return