Citation: Qiangqiang Xu, Zhiliyu Cui, Jizhen Yao, Bo Li, Ping Lv, Xin Shen, Zhuo Yu, Yan Ge, Zhenhui Qi. Constitutionally adaptive crown ether-based macrocyclic bolaamphiphile with redox-responsive switching of lower critical solution temperature behaviors[J]. Chinese Chemical Letters, ;2021, 32(12): 4024-4028. doi: 10.1016/j.cclet.2021.05.058 shu

Constitutionally adaptive crown ether-based macrocyclic bolaamphiphile with redox-responsive switching of lower critical solution temperature behaviors

    * Corresponding authors.
    E-mail addresses: ge@nwpu.edu.cn (Y. Ge), qi@nwpu.edu.cn (Z. Qi).
  • Received Date: 1 March 2021
    Revised Date: 25 May 2021
    Accepted Date: 26 May 2021
    Available Online: 1 June 2021

Figures(6)

  • Constitutionally adaptive chemistry of selenium-containing crown ethers (CEs) offers a new platform for controlling/switching the hydration of bolaamphiphile skeletons in water in an effective and simple manner by the virtue of covalent bonding. The adaptive behaviour of the macrocyclic bolaamphiphiles (transformations between C7SeBola and C7SeOBola) in response to redox environment was found to be a decisive factor.
  • 加载中
    1. [1]

      J.H. Fuhrhop, J. Mathieu, Angew. Chem. Int. Ed. 23 (1984) 100-113.  doi: 10.1002/anie.198401001

    2. [2]

      S. Landsmann, M. Luka, S. Polarz, Nat. Commun. 3 (2012) 1299.  doi: 10.1038/ncomms2321

    3. [3]

      R.W. Chakroun, A. Sneider, C.F. Anderson, et al., Angew. Chem. Int. Ed. 59 (2020) 4434-4442.  doi: 10.1002/anie.201913087

    4. [4]

      (a) G. Wu, J. Thomas, M. Smet, Z. Wang, X. Zhang, Chem. Sci. 5 (2014) 3267-3274;
      (b) Y. Yao, X. Chi, Y. Zhou, F. Huang, Chem. Sci. 5 (2014) 2778-2782;
      (c) L.H. Urner, B.N. Thota, O. Nachtigall, et al., Chem. Commun. 51 (2015) 8801-8804.

    5. [5]

      M.C. Kim, S.Y. Lee, Nanoscale 7 (2015) 17063-17070.  doi: 10.1039/C5NR04893A

    6. [6]

      F. Tosi, M.C.A. Stuart, S.J. Wezenberg, B.L. Feringa, Angew. Chem. Int. Ed. 58 (2019) 14935-14939.  doi: 10.1002/anie.201908010

    7. [7]

      V. Percec, P. Leowanawat, H.J. Sun, et al., J. Am. Chem. Soc. 135 (2013) 9055-9077.  doi: 10.1021/ja403323y

    8. [8]

      Z. Liu, S.K.M. Nalluri, J.F. Stoddart, Chem. Soc. Rev. 46 (2017) 2459-2478.  doi: 10.1039/C7CS00185A

    9. [9]

      (a) H.K. Lee, K.M. Park, Y.J. Jeon, et al., J. Am. Chem. Soc. 127 (2005) 5006-5007;
      (b) C. Hu, N. Ma, F. Li, et al., ACS Appl. Mater. Interfaces 10 (2018) 4603-4613;
      (c) S. Kushwaha, A. Maity, M. Gangopadhyay, et al., Langmuir 33 (2017) 10989-10999;
      (d) M. Aa. Petersen, B. Rasmussen, N.N. Andersen, et al., Chem. Eur. J. 23 (2017) 17010-17016.

    10. [10]

      (a) Y.X. Wang, Y.M. Zhang, Y. Liu, J. Am. Chem. Soc. 137 (2015) 4543-4549;
      (b) M. Lee, S.J. Lee, L.H. Jiang, J. Am. Chem. Soc. 126 (2004) 12724-12725;
      (c) I. Shulov, R.V. Rodik, Y. Arntz, et al., Angew. Chem. Int. Ed. 55 (2016) 15884-15888;
      (d) S. Avvakumova, P. Fezzardi, L. Pandolfi, et al., Chem. Commun. 50 (2014) 11029-11032;
      (e) J.G. Harangozo, V. Wintgens, Z. Miskolczy, et al., Langmuir 32 (2016) 10651-10658;
      (f) J. Gao, J. Li, W.C. Geng, et al., J. Am. Chem. Soc. 140 (2018) 4945-4953.

    11. [11]

      (a) Q. Pei, X. Hu, L. Wang, et al., ACS Appl. Mater. Interfaces 9 (2017) 26740-26748;
      (b) Y. Kang, Z. Cai, X. Tang, et al., ACS Appl. Mater. Interfaces 8 (2016) 4927;
      (c) H. Xiong, D. Zhou, X. Zheng, et al., Chem. Commun. 53 (2017) 3422-3425;
      (d) S. Sreejith, N.V. Menon, Y. Wang, et al., Mater. Chem. Front. 1 (2017) 831-837.

    12. [12]

      (a) Y. Yao, M. Xue, J. Chen, M. Zhang, F. Huang, J. Am. Chem. Soc. 134 (2012) 15712-15715;
      (b) Y. Yao, M. Xue, Z. Zhang, et al., Chem. Sci. 4 (2013) 3667-3672;
      (c) L. Jiang, X. Huang, D. Chen, et al., Angew. Chem. Int. Ed. 56 (2017) 2655-2659;
      (d) Q. Yao, B. Lü, C. Ji, Y. Cai, M. Yin, ACS Appl. Mater. Interfaces 9 (2017) 36320-36326;
      (e) K. Yang, Y. Chang, J. Wen, et al., Chem. Mater. 28 (2016) 1990-1993;
      (f) Y. Zhou, K. Jie, F. Huang, Chem Commun 54 (2018) 12856-12859;
      (g) Y. Fang, Y. Deng, W. Dehaen, Coord. Chem. Rev. 415 (2020) 213313-213349;
      (h) T. Ogoshi, R. Shiga, T. Yamagishi, J. Am. Chem. Soc. 134 (2012) 4577-4580;
      (i) T. Ogoshi, K. Kida, T. Yamagishi, J. Am. Chem. Soc. 134 (2012) 20146-20150.

    13. [13]

      (a) P. Ghosh, T.K. Khan, P.K. Bharadwaj, Chem. Commun. (1996) 189-190;
      (b) L. Chen, Y.K. Tian, Y. Ding, Y.J. Tian, F. Wang, Macromolecules 45 (2012) 8412-8419.

    14. [14]

      (a) S. Dong, J. Leng, Y. Feng, et al., Sci. Adv. 3 (2017) eaao0900;
      (b) S. Dong, L. Wang, J. Wu, et al., Langmuir 33 (2017) 13861-13866;
      (c) Z. Qi, L. Chiappisi, H. Gong, et al., Chem. Eur. J. 24 (2018) 3854-3861;
      (d) Q. Zhang, T. Li, A. Duan, et al., J. Am. Chem. Soc. 141 (2019) 8058-8063;
      (e) J. Shang, S. Li, T. Pan, et al., Chem. Commun. 56 (2020) 15052-15055;
      (f) J. Shang, B. Li, X. Shen, et al., J. Org. Chem. 86 (2021) 1430-1436;
      (g) T. Pan, J. Li, B. Li, et al., J. Phy. Chem. Lett. (2021), doi:10.1021/acs.jpclett.1020c02994;
      (h) S. Wu, Q. Zhang, Y. Deng, et al., J. Am. Chem. Soc. 142 (2020) 448-455.

    15. [15]

      L. Jin, B. Li, Z. Cui, et al., J. Phys. Chem. B 123 (2019) 9692-9698.  doi: 10.1021/acs.jpcb.9b09618

    16. [16]

      E. Renault, J.Y. Questel, J. Phys. Chem. A 108 (2004) 7232-7240.  doi: 10.1021/jp0482870

    17. [17]

      M. Pérez-Rodríguez, G. Prieto, C. Rega, et al., Langmuir 14 (1998) 4422-4426.  doi: 10.1021/la980296a

    18. [18]

      P. Wei, T.R. Cook, X. Yan, F. Huang, P.J. Stang, J. Am. Chem. Soc. 136 (2014) 15497-15500.  doi: 10.1021/ja5093503

    19. [19]

      T. Terashima, M. Kawabe, Y. Miyabara, H. Yoda, M. Sawamoto, Nat. Commun. 4 (2013) 2321.  doi: 10.1038/ncomms3321

    20. [20]

      C. Chen, Y. Cao, X. Wu, et al., Chin. Chem. Lett. 31 (2020) 1078-1082.  doi: 10.1016/j.cclet.2019.12.019

  • 加载中
    1. [1]

      Jiajie GuJiaxiang GuLei Yu . Selenium and Alzheimer's disease. Chinese Chemical Letters, 2025, 36(8): 110727-. doi: 10.1016/j.cclet.2024.110727

    2. [2]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    3. [3]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    4. [4]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    5. [5]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    6. [6]

      Baoqi WuRongzhi TangZhi-Wei LiFeng LinZongyu SunHuanyu XiaLin JiangYu Tan . Selective encapsulation of azo compounds by tetracationic cyclophane in water and photo-controlled reversible release. Chinese Chemical Letters, 2025, 36(9): 110896-. doi: 10.1016/j.cclet.2025.110896

    7. [7]

      Xin ZhangZhihao LuTianci RenJunxiang TangShuo LiChenghao ZhuLijun MaoDa Ma . Fluorescent "Texas-sized" macrocyclic receptors for the recognition and detection of nucleotides in water. Chinese Chemical Letters, 2025, 36(11): 110946-. doi: 10.1016/j.cclet.2025.110946

    8. [8]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    9. [9]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    10. [10]

      Kuanhong CaoSainan ChuYuanhua DingShanming LuLei YuJuan Du . Sustainable Se/C catalysts from carbohydrates: Unlocking oxidative deoximation reaction with high turnover numbers via free radical mechanisms. Chinese Chemical Letters, 2026, 37(1): 111486-. doi: 10.1016/j.cclet.2025.111486

    11. [11]

      Jing Tan Bo Zheng Lingyan Gao . Application of Crown Ether-Based Artificial Ion Transporters. University Chemistry, 2026, 41(2): 232-237. doi: 10.12461/PKU.DXHX202501010

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Ying Liu Jia Ji Yinling Hou Lilan Guo Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046

    14. [14]

      Pan-Pan HuaHui-Jun FengShu-Ning LanFrancisco AznarezLi-Fang Zhang . Post-modification-induced supramolecular transformation of Hopf link to macrocycle. Chinese Chemical Letters, 2025, 36(6): 110684-. doi: 10.1016/j.cclet.2024.110684

    15. [15]

      Fengzhang TUZhong JIN . Honeycomb-like N, O dual-doped carbon/selenium composites: Preparation and performance in alkali metal-selenium batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2371-2384. doi: 10.11862/CJIC.20250227

    16. [16]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    17. [17]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    18. [18]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    19. [19]

      Zhi LiShuya PanYuan TianShaowei LiuWeifeng WeiJinlin WangTianfeng ChenLing Wang . Selenium nanoparticles enhance the chemotherapeutic efficacy of pemetrexed against non-small cell lung cancer. Chinese Chemical Letters, 2024, 35(12): 110018-. doi: 10.1016/j.cclet.2024.110018

    20. [20]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

Metrics
  • PDF Downloads(7)
  • Abstract views(1481)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return