Citation: Yingjie Yu, Aiyao Liu, Gagan Dhawan, Haibo Mei, Wei Zhang, Kunisuke Izawa, Vadim A. Soloshonok, Jianlin Han. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity[J]. Chinese Chemical Letters, ;2021, 32(11): 3342-3354. doi: 10.1016/j.cclet.2021.05.042 shu

Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity

    * Corresponding authors.
    ** Corresponding author at: Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.
    E-mail addresses: gagandhawan@andc.du.ac.in (G. Dhawan), wei2.zhang@umb.edu (W. Zhang), vadym.soloshonok@ehu.es (V.A. Soloshonok), hanjl@njfu.edu.cn (J. Han).
  • Received Date: 19 March 2021
    Revised Date: 21 May 2021
    Accepted Date: 21 May 2021
    Available Online: 27 May 2021

Figures(22)

  • Thirteen new fluorine-containing drugs, which have been granted approval by the US Food and Drug Administration (FDA) in 2020, are profiled in this review. Therapeutic areas of these new fluorinated pharmaceuticals include medicines and diagnostic agents for Cushing's disease, neurofibromatosis, migraine, Alzheimer's disease, myelodysplastic syndromes, hereditary angioedema attacks, and various cancers. Molecules of these approved drugs feature aromatic fluorine (Ar-F) (11 compounds), aromatic Ar-CF3 (1), aliphatic CHF (1) and CF2 (1) groups. For each compound, we provide a spectrum of biological activity, medicinal chemistry discovery, and synthetic approaches.
  • 加载中
    1. [1]

      (a) N. Aspern, S. Roser, B.R. Rad, et al., J. Fluorine Chem. 198 (2017) 24-33;
      (b) F. Gschwind, G. Rodriguez-Garcia, D.J.S. Sandbeck, et al., J. Fluorine Chem. 182 (2016) 76-90;
      (c) N. von Aspern, G.V. Roeschenthaler, M. Winter, I. Cekic-Laskovic, Angew. Chem. Int. Ed. 58 (2019) 15978-16000;
      (d) Y. Wang, W.H. Zhang, ChemElectroChem 2 (2015) 22-36;
      (e) T. Wang, X. Zang, X. Wang, et al., Energy Stor. Mater. 30 (2020) 367-384;
      (f) G.G. Amatucci, N. Pereira, J. Fluorine Chem. 128 (2007) 243-262;
      (g) W. Zhu, J.M. Alzola, T.J. Aldrich, et al., ACS Energy Lett. 4 (2019) 2695-2702;
      (h) T. Nakajima, J. Fluorine Chem. 105 (2000) 229-238;
      (i) Y. Che, X. Yuan, L. Sun, et al., J. Mater. Chem. C 8 (2020) 15839-15851;
      (j) X.B. Cheng, R. Zhang, C.Z. Zhao, et al., Adv. Sci. 3 (2016) 1500213.

    2. [2]

      (a) T. Fujiwara, D. O'Hagan, J. Fluorine Chem. 167 (2014) 16-29;
      (b) M.G. Cagetti, G. Campus, E. Milia, P. Lingström, Acta Odontol. Scand. 71 (2013) 381-387;
      (c) Y. Lu, W.F. Guo, X.Q. Yang, J. Agric. Food Chem. 52 (2004) 4472-4476;
      (d) N.I. Sarker, M.S. Ahmad, S. Islam, N.H. Memon, Fluoride 53 (2020) 1-22;
      (e) L.A. Schaider, S.A. Balan, A. Blum, et al., Environ. Sci. Technol. Lett. 4 (2017) 105-111;
      (f) J. Cholak, J. Occup. Environ. Med. 1 (1959) 501-511;
      (g) Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 23 (2020) 101467.

    3. [3]

      (a) T. Fujiwara, D. O'Hagan, J. Fluorine Chem. 167 (2014) 16-29;
      (b) D. O'Hagan, J. Fluorine Chem. 131 (2010) 1071-1081;
      (c) W. Zhu, J. Wang, S. Wang, et al., J. Fluorine Chem. 167 (2014) 37-54;
      (d) J. Wang, M. Sanchez-Rosello, J.L. Acena, et al., Chem. Rev. 114 (2014) 2432-2506;
      (e) Y. Zhou, J. Wang, Z. Gu, et al., Chem. Rev. 116 (2016) 422-518;
      (f) J. Han, L. Kiss, H. Mei, et al., Chem. Rev. 121 (2021) 4678-4742;
      (g) M.A. Miller, E.M. Sletten, ChemBioChem 21 (2020) 3451-3462;
      (h) S.J. Fomon, J. Ekstrand, E.E. Ziegler, J. Public. Health Dent. 60 (2000) 131-139;
      (i) A. Strunecká, J. Patočka, P. Connett, J. Appl. Biomed. 2 (2004) 141-150;
      (j) D. Kanduti, P. Sterbenk, B. Artnik, Mater. Sociomed. 28 (2016) 133-137;
      (k) P.T. Lowe, D. O'Hagan, J. Fluorine Chem. 230 (2020) 109420.

    4. [4]

      (a) L. Wang, T. Kitamura, Y. Zhou, et al., J. Fluorine Chem. 240 (2020) 109670;
      (b) J. Han, G. Butler, H. Moriwaki, et al., Molecules 25 (2020) 2116;
      (c) H. Mei, J. Han, S. White, G. Butler, V.A. Soloshonok, J. Fluorine Chem. 227 (2019) 109370;
      (d) 2019 A. Sato, M.V. Ponomarenko, T. Ono, G.V. Röschenthaler, V.A. Soloshonok, Eur. J. Org. Chem. (2019) 4417-4421. 2019;
      (e) W. Zhang, Chem. Rev. 104 (2004) 2531-2556;
      (f) W.B. Yi, J.J. Ma, L.Q. Jiang, C. Cai, W. Zhang, J. Fluorine Chem. 157 (2014) 84-105;
      (g) A.J. Cresswell, S.G. Davies, P.M. Roberts, J.E. Thomson, Chem. Rev. 115 (2015) 566-611;
      (h) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 115 (2015) 650-682;
      (i) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev. 115 (2015) 683-730;
      (j) X.H. Xu, K. Matsuzaki, N. Shibata, Chem. Rev. 115 (2015) 731-764;
      (k) V.G. Nenajdenko, V.M. Muzalevskiy, A.V. Shastin, Chem. Rev. 115 (2015) 973-1050.

    5. [5]

      (a) M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612-633;
      (b) L. Wang, Z. Li, J. Liu, et al., Curr. Org. Chem. 24 (2020) 2181-2191;
      (c) J. Liu, Z. Li, H. Mei, V.A. Soloshonok, J. Han, ACS Omega 4 (2019) 19505-19512;
      (d) H. Mei, J. Liu, S. Fustero, et al., Org. Biomol. Chem. 17 (2019) 762-775;
      (e) H. Mei, J. Han, S. Fustero, et al., J. Fluorine Chem. 216 (2018) 57-70;
      (f) Y. Zhu, J.L. Han, J. Wang, et al., Chem. Rev. 118 (2018) 3887-3964;
      (g) L. Zhang, W. Zhang, W. Sha, et al., J. Fluorine Chem. 198 (2017) 2-9;
      (h) J. Han, A.E. Sorochinsky, T. Ono, V.A. Soloshonok, Curr. Org. Synth. 8 (2011) 281-294;
      (i) J.L. Aceña, A.E. Sorochinsky, H. Moriwaki, T. Sato, V.A. Soloshonok, J. Fluorine Chem. 155 (2013) 21-38.

    6. [6]

      (a) E. Tokunaga, H. Akiyama, V.A. Soloshonok, et al., PLoS ONE 12 (2017) e0182152;
      (b) A.E. Sorochinsky, T. Katagiri, T. Ono, et al., Chirality 25 (2013) 365-368;
      (c) A.E. Sorochinsky, J.L. Aceña, V.A. Soloshonok, Synthesis 45 (2013) 141-152;
      (d) D. O'Hagan, H. Deng, Chem. Rev. 115 (2015) 634-649;
      (e) I. Tirotta, V. Dichiarante, C. Pigliacelli, et al., Chem. Rev. 115 (2015) 1106-1129;
      (f) R. Hoque, A.L. Chesson, J. Clin. Sleep Med. 5 (2009) 471-476;
      (g) P. Venkateswarlu, Adv. Dent. Res. 8 (1994) 80-86;
      (h) X.G. Li, M. Haaparanta, O. Solin, J. Fluorine Chem. 143 (2012) 49-56;
      (i) M. Houde, J.W. Martin, R.J. Letcher, K.R. Solomon, D.C.G. Muir, Environ. Sci. Technol. 40 (2006) 3463-3473;
      (j) J. Yang, R. Zhang, Y. Zhao, et al., Spectrochim. Acta A 248 (2021) 119199.

    7. [7]

      (a) H. Mei, J. Han, S. White, et al., Chem. Eur. J. 26 (2020) 11349-11390;
      (b) H. Mei, J. Han, K.D. Klika, et al., Eur. J. Med. Chem. 186 (2020) 111826;
      (c) J. Han, A.M. Remete, L.S. Dobson, L. Kiss, K. Izawa, H. Moriwaki, V.A. Soloshonok, D. O'Hagan, J. Fluorine Chem. 239 (2020) 109639;
      (d) K.L. Kirk, J. Fluorine Chem. 127 (2006) 1013-1029;
      (e) E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly, N.A. Meanwell, J. Med. Chem. 58 (2015) 8315-8359;
      (f) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
      (g) M. Inoue, Y. Sumii, N. Shibata, ACS Omega 5 (2020) 10633-10640;
      (h) R. Hevey, Chem. Eur. J. 27 (2021) 2240-2253;
      (i) M. Shevchuk, Q. Wang, R. Pajkert, et al., Adv. Synth. Catal. (2021), doi: 10.1002/adsc.202001464.

    8. [8]

      H. Mei, J. Han, S. Fustero, et al., Chem. Eur. J. 25 (2019) 11797-11819.  doi: 10.1002/chem.201901840

    9. [9]

      H. Mei, A.M. Remete, Y. Zou, et al., Chin. Chem. Lett. 31 (2020) 2401-2413.  doi: 10.1016/j.cclet.2020.03.050

    10. [10]

      B.L. Hodous, J.L. Kim, K.J. Wilson, D. Wilson, WO2015057873 A1, 2015.

    11. [11]

      (a) E.K. Evans, A.K. Gardino, J.L. Kim, et al., Sci. Transl. Med. 9 (2017) 1690 eaao;
      (b) E.K. Evans, A. Gardino, B. Hodous, et al., Blood 126 (2015) 568.

    12. [12]

      S. Dhillon, Drugs 80 (2020) 433-439.  doi: 10.1007/s40265-020-01275-2

    13. [13]

      X. Xu, CN111454217 A, 2020.

    14. [14]

      R. Shintani, M. Takeda, T. Tsuji, T. Hayashi, J. Am. Chem. Soc. 132 (2010) 13168-13169.  doi: 10.1021/ja106114q

    15. [15]

      Y. Xu, Y. Yu, Z. Fan, L. Chen, CN110950872 A, 2020.

    16. [16]

      B.L. Hodous, US2016/0031892 A1, 2016.

    17. [17]

      K.L. Meredith, G. Ksander, L.G. Monovich, et al., ACS Med. Chem. Lett. 4 (2013) 1203-1207.  doi: 10.1021/ml400324c

    18. [18]

      J. Ménard, L. Pascoe, J. Hypertens. 24 (2006) 993-997.  doi: 10.1097/01.hjh.0000226183.98439.b3

    19. [19]

      S. Duggan, Drugs 80 (2020) 495-500.  doi: 10.1007/s40265-020-01277-0

    20. [20]

      C. Zhang, J. Chakma, WO2016/109361 A2, 2016.

    21. [21]

      (a) A.E. Sorochinsky, J.L. Aceña, V.A. Soloshonok, Synthesis 45 (2013) 141-152;
      (b) J. Han, O. Kitagawa, A. Wzorek, K.D. Klika, V.A. Soloshonok, Chem. Sci. 9 (2018) 1718-1739;
      (c) V.A. Soloshonok, D.O. Berbasov, Chim. Oggi. Chem. Today 24 (2006) 44-47.

    22. [22]

      (a) A.E. Sorochinsky, T. Katagiri, T. Ono, et al., Chirality 25 (2013) 365-368;
      (b) T. Nakamura, K. Tateishi, S. Tsukagoshi, et al., Tetrahedron 68 (2012) 4013-4017;
      (c) Y. Suzukia, J. Han, O. Kitagawa, J.L. Aceñac, K.D. Klika, V.A. Soloshonok, RSC Adv. 5 (2015) 2988-2993.

    23. [23]

      J.L. Aceña, A.E. Sorochinsky, T. Katagiri, V.A. Soloshonok, Chem. Commun. 49 (2013) 373-375.  doi: 10.1039/C2CC37491A

    24. [24]

      T. Katagiri, S. Takahashi, A. Tsuboi, M. Suzaki, K. Uneyama, J. Fluorine Chem. 131 (2010) 517-520.  doi: 10.1016/j.jfluchem.2009.12.007

    25. [25]

      (a) H. Ueki, M. Yasumoto, V.A. Soloshonok, Tetrahedron 21 (2010) 1396-1400;
      (b) M. Yasumoto, H. Ueki, T. Ono, T. Katagiri, V.A. Soloshonok, J. Fluorine Chem. 131 (2010) 535-539;
      (c) M. Yasumoto, H. Ueki, V.A. Soloshonok, J. Fluorine Chem. 131 (2010) 266-269;
      (d) M. Yasumoto, H. Ueki, V.A. Soloshonok, J. Fluorine Chem. 131 (2010) 540-544;
      (e) J. Han, D.J. Nelson, A.E. Sorochinsky, V.A. Soloshonok, Curr. Org. Synth. 8 (2011) 310-317;
      (f) V.A. Soloshonok, A. Wzorek, K.D. Klika, Tetrahedron 28 (2017) 1430-1434.

    26. [26]

      A. Markham, Keam S.J., Drugs 80 (2020) 931-937.  doi: 10.1007/s40265-020-01331-x

    27. [27]

      E.L. Wallace, J.P. Lyssikatos, B.T. Hurley, A.L. Marlow, WO03077914, A1, 2003.

    28. [28]

      B.R. Davies, A. Logie, J.S. McKay, et al., Mol. Cancer Ther. 6 (2007) 2209-2219.  doi: 10.1158/1535-7163.MCT-07-0231

    29. [29]

      C.J. Squire, J. Demattei, R.J. Boberts, WO2007076245 A2, 2007.

    30. [30]

      P.C.C. Liu, K. Holly, L. Wu, et al., PLoS ONE 15 (2020) e0231877.  doi: 10.1371/journal.pone.0231877

    31. [31]

      L. Wu, C. Zhang, C. He, et al., WO2014007951 A2 (2014).

    32. [32]

      S.M. Hoy, Drugs 80 (2020) 923-929.  doi: 10.1007/s40265-020-01330-y

    33. [33]

      T.C. Burn, P.C. Liu, W. Frietze, et al., WO2019/213544 A2, 2019.

    34. [34]

      U. Glaenzel, Y. Jin, R. Hansen, et al., Drug Metab. Dispos. 48 (2020) 873-885.  doi: 10.1124/dmd.119.090324

    35. [35]

      M. Xu, C. He, C. Zhang, WO2008/64157 A1, 2008.

    36. [36]

      J. Zhuo, C. He, W. Yao, US US2011/212967 A1, 2011.

    37. [37]

      S. Dhillon, Drugs 80 (2020) 1125-1131.  doi: 10.1007/s40265-020-01347-3

    38. [38]

      D.L. Flynn, M.D. Kaufman, WO 2013/184119 A1, 2013.

    39. [39]

      D.L. Flynn, M.D. Kaufman, P.A. Petillo, US 8461179 B1, 2013.

    40. [40]

      S. Dhillon, Drugs 80 (2020) 1133-1138.  doi: 10.1007/s40265-020-01348-2

    41. [41]

      G. Luo, L. Chen, C.M. Conway, et al., J. Med. Chem. 55 (2012) 10644-10651.  doi: 10.1021/jm3013147

    42. [42]

      (a) J. Liu, J. Han, K. Izawa, et al., Eur. J. Med. Chem. 208 (2020) 112736;
      (b) Z. Yin, W. Hu, W. Zhang, et al., Amino Acids 52 (2020) 1227-1261.

    43. [43]

      G. Luo, L. Chen, C.M. Conway, et al., ACS Med. Chem. Lett. 3 (2012) 337-341.  doi: 10.1021/ml300021s

    44. [44]

      L.J. Scott, Drugs 80 (2020) 741-746.  doi: 10.1007/s40265-020-01301-3

    45. [45]

      G. Luo, GM. Bubowchik, J.E. Macor, WO 2011046997 A1, 2011.

    46. [46]

      D.K. Leahy, Y. Fan, L.V. Desai, et al., Org. Lett. 14 (2012) 4938-4941.  doi: 10.1021/ol302262q

    47. [47]

      (a) B.K. Park, N.R. Kitteringham, P.M. O'Neill, Annu. Rev. Pharmacol. Toxicol. 41 (2001) 443-470;
      (b) G.J. Liao, A.S. Clark, E.K. Schubert, D.A. Mankoff, J. Nucl. Med. 57 (2016) 1269-1275.

    48. [48]

      (a) W. Li, Int. Congr. Ser. 1264 (2004) 53-76;
      (b) R.M. Glasspool, T.R.J. Evans, Eur. J. Cancer 36 (2000) 1661-1670;
      (c) L. Varagnolo, M.P.M. Stokkel, U. Mazzi, E.K.J. Pauwels, Nucl. Med. Biol. 27 (2000) 103-112;
      (d) M.J. Adam, D.S. Wilbur, Chem. Soc. Rev. 34 (2004) 153-163.

    49. [49]

      (a) L.M. Peterson, D.A. Mankoff, T. Lawton, et al., J. Nucl. Med. 49 (2008) 367-374;
      (b) M. Paquette, É. Lavallée, S. Phoenix, et al., J. Nucl. Med. 59 (2018) 197-203.

    50. [50]

      S.Y. Chae, S.H. Ahn, S.B. Kim, et al., Lancet Oncol 20 (2019) 546-555.  doi: 10.1016/S1470-2045(18)30936-7

    51. [51]

      L.M. Peterson, B.F. Kurland, E.K. Schubert, et al., Mol. Imaging Biol. 16 (2014) 431-440.  doi: 10.1007/s11307-013-0699-7

    52. [52]

      D.O. Kiesewetter, M.R. Kilbourn, S.W. Landvatter, et al., J. Nucl. Med. 25 (1984) 1212-1221.

    53. [53]

      (a) P. Kumar, P.J. Mercer, C. Doerkson, K. Tonkin, A.J. McEwan, J. Pharm. Pharm. Sci. 10 (2007) 256s-265s;
      (b) J.L. Lim, L. Zheng, M.S. Berridge, T.J. Tewson, Nucl. Med. Biol. 23 (1996) 911-915.

    54. [54]

      M. Dixit, J. Shi, L. Wei, G. Afari, S. Bhattacharyya, Int. J. Mol. Imaging (2013) 2786072013.

    55. [55]

      M. Schöll, A. Maass, N. Mattsson, et al., Mol. Cell. Neurosci. 97 (2019) 18-33.  doi: 10.1016/j.mcn.2018.12.001

    56. [56]

      V.L. Villemagne, M.T. Fodero-Tavoletti, C.L. Masters, C.C. Rowe, Lancet Neurol. 14 (2015) 114-124.  doi: 10.1016/S1474-4422(14)70252-2

    57. [57]

      B. Hall, E. Mak, S. Cervenka, et al., Ageing Res. Rev. 36 (2017) 50-63.  doi: 10.1016/j.arr.2017.03.002

    58. [58]

      A. Leuzy, K. Chiotis, L. Lemoine, et al., Mol. Psychiatry 24 (2019) 1112-1134.  doi: 10.1038/s41380-018-0342-8

    59. [59]

      (a) G.J. Liao, A.S. Clark, E.K. Schubert, D.A. Mankoff, J. Nucl. Med. 57 (2016) 1269-1275;
      (b) Y.T. Wang, P. Edison, Curr. Neurol. Neurosci. Rep. 19 (2019) 45.

    60. [60]

      D.P. Holt, H.T. Ravert, R.F. Dannals, J. Label. Compd. Radiopharm. 59 (2016) 411-415.  doi: 10.1002/jlcr.3425

    61. [61]

      A.V. Mossine, A.F. Brooks, B.D. Henderson, et al., EJNMMI Radiopharm. Chem. 2 (2017) 7.  doi: 10.1186/s41181-017-0027-7

    62. [62]

      (a) E. Jabbour, J.P. Issa, G. Garcia-Manero, H. Kantarjian, Cancer 112 (2008) 2341-2351;
      (b) K. Ueda, A. Masuda, M. Fukuda, et al., Drug Metab. Pharmacokinet. 32 (2017) 301-310;
      (c) M. Duchmann, R. Itzykson, Int. J. Hematol. 110 (2019) 161-169.

    63. [63]

      S. Belyakov, G.S. Hamilton, B. Duvall, D. Ferraris, M. Vaal, AU2016213880B2, 2016.

    64. [64]

      (a) G.W. Camiener, Biochem. Pharmacol. 61 (1967) 1691-1702;
      (b) H. Hosono, S. Kuno, J. Biochem. 74 (1973) 797-803.

    65. [65]

      A.H. Teh, M. Kimura, M. Yamamoto, et al., Biochemistry 45 (2006) 7825-7833.  doi: 10.1021/bi060345f

    66. [66]

      S. Costanzi, S. Vilar, D. Micozzi, et al., ChemMedChem 6 (2011) 1452-1458.  doi: 10.1002/cmdc.201100139

    67. [67]

      D. Ferraris, B. Duvall, G. Delahanty, et al., J. Med. Chem. 57 (2014) 2582-2588.  doi: 10.1021/jm401856k

    68. [68]

      (a) A. Oganesian, S. Redkar, P. Taverna, G. Choy, R. Joshi-Hangal, M. Azab, Blood 122 (2013) 2526;
      (b) M.R. Savona, O. Odenike, P.C. Amrein, et al., Lancet Haematol. 6 (2019) e194-e203;
      (c) G. Garcia-Manero, E.A. Griffiths, D.P. Steensma, et al., Blood 136 (2020) 674-683.

    69. [69]

      S. Dhillon, S. Drugs 80 (2020) 1373-1378.  doi: 10.1007/s40265-020-01389-7

    70. [70]

      (a) J. Norton, H. Matsuo, S.J. Sturla, J. Org. Chem. 74 (2009) 2221-2223;
      (b) M.S. Kim, Y.J. Kim, J.H. Choi, H.G. Lim, D.W. Cha, WO2007/069838A1 (2007).

    71. [71]

      (a) Jr G.Y. Ku, B.A. Haaland, G. de Lima Lopes, Lung Cancer 74 (2011) 469-473;
      (b) S.G. O'Brien, F. Guilhot, R.A. Larson, et al., New Engl. J. Med. 348 (2003) 994-1004;
      (c) A.T. Shaw, D.W. Kim, K. Nakagawa, et al., New Engl. J. Med. 368 (2013) 2385-2394;
      (d) C. Zhou, Y.L. Wu, G. Chen, et al., Lancet Oncol. 12 (2011) 735-742.

    72. [72]

      (a) J.C. Soria, Y. Ohe, J. Vansteenkiste, et al., New Engl. J. Med. 378 (2018) 113-125;
      (b) J.J. Lin, A.T. Shaw, Trends Cancer 2 (2016) 350-364;
      (c) J.F. Gaino, A.T. Shaw, J. Clin. Oncol. 31 (2013) 3987-3996;
      (d) S. Peters, D.R. Camidg, A.T. Shaw, et al., New Engl. J. Med. 377 (2017) 829-838;
      (e) E. Jabbour, H. Kantarjian, J. Cortes Clin, Lymphoma Myeloma Leuk 15 (2015) 323-334.

    73. [73]

      (a) J.F. Gainor, J.F. Shaw, Genome. Res. 3 (2013) 604-606;
      (b) Y.S. Ju, W.C. Lee, J.Y. Shin, et al., Genome. Res. 22 (2012) 436-445;
      (c) T. Kohno, H. Ichikawa, Y. Totoki, et al., Nat. Med. 18 (2012) 375-377;
      (d) N. Stransky, E. Cerami, S. Schalm, J.L. Kim, C. Lengauer, Nat. Commun. 5 (2014) 4846-4856;
      (e) P. Ballerini, S. Struski, C. Cresson, et al., Leukemia 26 (2012) 2384-2389;
      (f) A.F. Le Rolle, S.J. Klempner, C.R. Garrett, et al., Oncotarget 6 (2015) 28929-28937;
      (g) A. Skalova, G. Stenman, R.H.W. Simpson, et al., Am. J. Surg. Pathol. 42 (2018) e11-e27.

    74. [74]

      M. Takahashi, J. Ritz, G.M. Cooper, Cell 42 (1985) 581-588.  doi: 10.1016/0092-8674(85)90115-1

    75. [75]

      S.M. Jhiang, Oncogene 19 (2000) 5590-5597.  doi: 10.1038/sj.onc.1203857

    76. [76]

      A. Russo, A.R. Lopes, M.G. McCusker, et al., Curr. Oncol. Rep. 22 (2020) 48.  doi: 10.1007/s11912-020-00909-8

    77. [77]

      V. Subbiah, J.F. Gainor, R. Rahal, et al., Cancer Discov. 8 (2018) 836-849.  doi: 10.1158/2159-8290.CD-18-0338

    78. [78]

      V. Subbiah, D. Yang, V. Velcheti, A. Drilon, F. Meric-Bernstam, J. Clin. Oncol. 38 (2020) 1209-1221.  doi: 10.1200/JCO.19.02551

    79. [79]

      J.D. Brubaker, J.L. Kim, K.J. Wilson, D. Wilson, L.V. Dipietro, WO2017079140, 2017.

    80. [80]

      J.H. Levy, D.J. Freiberger, J. Roback, Anesth. Analg. 110 (2010) 1271-1280.  doi: 10.1213/ANE.0b013e3181d7ac98

    81. [81]

      (a) J.W. Bryant, Z. Shariat-Madar, Cardiovasc. Hematol. Agents Med. Chem. 3(3) (2009) 234-250;
      (b) A.P. Kaplan, World Allergy Organ J. 4 (2011) 73-75;
      (c) A.H. Schmaier, Front. Med. (Lausanne) 5 (2018) 3.

    82. [82]

      (a) Z. Xie, Z. Li, Y. Shao, C. Liao, Eur. J. Med. Chem. 190 (2020) 112137;
      (b) Z. Li, J. Partridge, A. Silva-Garcia, et al., ACS Med. Chem. Lett. 8 (2016) 185-190.

    83. [83]

      E. Aygören-Pürsün, M. Magerl, J. Graff, et al., J. Allergy Clin. Immunol. 138 (2016) e5934-936.

    84. [84]

      T. Brandl, S. Flohr, S. Kopec, et al., WO2012017020A1 (2012).

    85. [85]

      (a) J.R. Hwang, G. Hwang, A. Johri, T. Craig, Immunotherapy 17 (2019) 1439-1444;
      (b) E. Aygören-Pürsün, A. Bygum, V. Grivcheva-Panovska, et al., N. Engl. J Med. 379 (2018) 352-362.

    86. [86]

      Y. El-Kattan, Y.S. Babu, WO2020092898A1, 2019.

    87. [87]

      N. Das, T.R. Kumar, J. Mol. Endocrinol. 60 (2018) R131-R155.  doi: 10.1530/JME-17-0308

    88. [88]

      (a) T.D. Fitapatrick, J. Green, F. Haviv, C.A. Palabrica, US5140009, 1992;
      (b) T. Janaky, A. Juhasz, A.V. Schally, US5171835A, 1992.

    89. [89]

      K. Kato, Y. Sugiura, K. Kato, US5633248, 1997.

    90. [90]

      R.J. Bienstock, J. Rizo, S.C. Koerber, et al., J. Med. Chem. 36 (1993) 3265-3273.  doi: 10.1021/jm00074a006

    91. [91]

      (a) P. Limonta, M. Montagnani M. Marelli, S. Mai, et al., Endocr. Rev. 33 (2012) 784-811;
      (b) P. Limonta, M. Manea, Cancer Treat. Rev. 39 (2013) 647-663.

    92. [92]

      (a) S. Furuya, N. Choh, K. Kato, S. Hinuma, WO95/28405, 1995;
      (b) S. Furuya, N. Choh, K. Kato, S. Hinuma, WO96/24597, 1996;
      (c) S. Furuya, N. Choh, S. Sasaki, WO97/14682, 1997;
      (d) S. Furuya, N. Choh, M. Harada, S. Sasaki, WO97/14697, 1997;
      (e) S. Furuya, T. Imaeda, S. Sasaki, WO99/33831, 1999;
      (f) S. Furuya, N. Choh, N. Suzuki, T. Imada, WO00/00493, 2000;
      (g) S. Furuya, N. Suzuki, N. Choh, Y. Nara, WO00/56739, 2000.

    93. [93]

      B. De, J.J. Plattner, E.N. Bush, et al., J. Med. Chem. 32 (1989) 2036-2038.  doi: 10.1021/jm00129a003

    94. [94]

      N. Cho, T. Imada, T. Hitaka, et al., US7300935B2, 2007.

    95. [95]

      K. Miwa, T. Hitaka, T. Imada, et al., J. Med. Chem. 54 (2011) 4998-5012.  doi: 10.1021/jm200216q

    96. [96]

      F.L. Tukun, D.E. Olberg, P.J. Riss, I. Haraldsen, A. Kaass, J. Klaveness, Mol. 22 (2017) 2188.  doi: 10.3390/molecules22122188

    97. [97]

      A. Markham, Drugs 79 (2019) 675-679.  doi: 10.1007/s40265-019-01105-0

    98. [98]

      (a) Y.N. Lamb, Drugs 78 (2018) 1501-1508;
      (b) "Elagolix-Abbvie/Neurocrine Biosciences-AdisInsight" (https://adisinsight.springer.com/drugs/800020238).

    99. [99]

      T. Hara, H. Araki, M. Kusaka, et al., J. Clin. Endocrinol. Metab. 88 (2003) 1697-1704.  doi: 10.1210/jc.2002-021065

  • 加载中
    1. [1]

      Qian WangYeping BianGagan DhawanWei ZhangAlexander E. SorochinskyAta MakaremVadim A. SoloshonokJianlin Han . FDA approved fluorine-containing drugs in 2023. Chinese Chemical Letters, 2024, 35(11): 109780-. doi: 10.1016/j.cclet.2024.109780

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    6. [6]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    11. [11]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

    12. [12]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    13. [13]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    14. [14]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    15. [15]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    16. [16]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    17. [17]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    18. [18]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    19. [19]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    20. [20]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

Metrics
  • PDF Downloads(45)
  • Abstract views(1164)
  • HTML views(260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return