Citation: Min Yang, Huiqi Han, Hui Jiang, Shengqing Ye, Xiaona Fan, Jie Wu. Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1, 6-addition[J]. Chinese Chemical Letters, ;2021, 32(11): 3535-3538. doi: 10.1016/j.cclet.2021.05.007 shu

Photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide and para-quinone methides via radical 1, 6-addition

Figures(3)

  • A photoinduced reaction of potassium alkyltrifluoroborates, sulfur dioxide, and para-quinone methides under visible light irradiation at room temperature is developed, giving rise to diarylmethyl alkylsulfones in moderate to good yields. This reaction works well under photocatalysis with a broad substrate scope by using DABCO·(SO2)2 as the source of sulfur dioxide. Mechanistic study shows that this transformation is initiated by alkyl radicals generated in situ from potassium alkyltrifluoroborates in the presence of photocatalyst. The subsequent insertion of sulfur dioxide and radical 1, 6-addition of para-quinone methides with alkylsulfonyl radical intermediates afford the corresponding diarylmethyl alkylsulfones.
  • 加载中
    1. [1]

      (a) M.R. Prinsep, J.W. Blunt, M.H.G. Munro, J. Nat. Prod. 54 (1991) 1068-1076;
      (b) M. Teall, P. Oakley, T. Harrison, et al., Bioorg. Med. Chem. Lett. 15 (2005) 2685-2688;
      (c) L. Legros, J.R. Dehli, C. Bolm, Adv. Synth. Catal. 347 (2005) 19-31;
      (d) I. Churcher, D. Beher, J.D. Best, et al., Bioorg. Med. Chem. Lett. 16 (2006) 280-284;
      (e) Y. Harrak, G. Casula, J. Basset, et al., J. Med. Chem. 53 (2010) 6560-6571.

    2. [2]

      N.S. Simpkins, Sulfones in Organic Synthesis, Pergamon Press, Oxford, 1993.

    3. [3]

      (a) J. Zhou, M.L. Wang, X. Gao, G.F. Jiang, Y.G. Zhou, Chem. Commun. 53 (2017) 3531-3534;
      (b) M. Nambo, Z.T. Ariki, D. Canseco-Gonzalez, D.D. Beattie, C.M. Crudden, Org. Lett. 18 (2016) 2339-2342;
      (c) M. Nambo, C.M. Crudden, Angew. Chem. Int. Ed. 53 (2014) 742-746.

    4. [4]

      (a) D.F. Duxbury, Chem. Rev. 93 (1993) 381-433;
      (b) M.S. Shchepinov, V.A. Korshun, Chem. Soc. Rev. 32 (2003) 170-180;
      (c) V. Nair, S. Thomas, S.C. Mathew, K.G. Abhilash, Tetrahedron 62 (2006) 6731-6747.

    5. [5]

      (a) P. Thirupathi, S.S. Kim, Eur. J. Org. Chem. 2010 (2010) 1798-1808;
      (b) J.L. Zhao, S.H. Guo, J. Qiu, et al., Tetrahedron Lett 57 (2016) 2375-2378;
      (c) R.R. Kuchukulla, F. Li, Z. He, L. Zhou, Q. Zeng, Green Chem 21 (2019) 5808-5812.

    6. [6]

      (a) M.A. Reddy, P.S. Reddy, B. Sreedhar, Adv. Synth. Catal. 352 (2010) 1861-1869;
      (b) K. Xu, L. Li, W. Yan, et al., Green Chem 19 (2017) 4494-4497;
      (c) H. Yamamoto, K. Nakata, Eur. J. Org. Chem. 2019 (2019) 4906-4910.

    7. [7]

      (a) B. Zheng, T. Jia, P.J. Walsh, Org. Lett. 15 (2013) 1690-1693;
      (b) M. Nambo, C.M. Crudden, Angew. Chem. Int. Ed. 53 (2014) 742-746.

    8. [8]

      (a) T. Liu, J. Liu, S. Xia, et al., ACS Omega 3 (2018) 1409-1415;
      (b) X.Y. Guan, L.D. Zhang, P.S. You, S.S. Liu, Z.Q. Liu, Tetrahedron Lett 60 (2019) 244-247;
      (c) Z.Q. Liu, P.S. You, L.D. Zhang, et al., Molecules 25 (2020) 539-553.

    9. [9]

      (a) M.G. Peter, 1989 Angew. Chem. Int. Ed., 28555-570;
      (b) H.U. Wagner, R. Gompper, Quinone Methides, in S. Patai, Z. Rappport (Eds. ), The Chemistry of Quinonoid Compounds, Wiley, New York, 1974, pp. 1145-1178;
      (c) A.B.Q. Turner, 1964 Q. Rev. Chem. Soc., 18347-360;
      (d) D.J. Hart, P.A. Cain, D.A. Evans, 1978 J. Am. Chem. Soc., 1001548-1557.

    10. [10]

      (a) V. Reddy, R. Vijaya Anand, Org. Lett. 17 (2015) 3390-3393;
      (b) F.S. He, J.H. Jin, Z.T. Yang, et al., ACS Catal 6 (2016) 652-656;
      (c) K. Zhao, Y. Zhi, A. Wang, D. Enders, ACS Catal 6 (2016) 657-660;
      (d) N. Dong, Z.P. Zhang, X.S. Xue, X. Li, J.P. Cheng, Angew. Chem. Int. Ed. 55 (2016) 1460-1464;
      (e) Y.H. Deng, X.Z. Zhang, K.Y. Yu, et al., Chem. Commun. 52 (2016) 4183-4186;
      (f) Z.P. Zhang, N. Dong, X. Li, Chem. Commun. 53 (2017) 1301-1304;
      (g) B.M. Sharma, D.R. Shinde, R. Jain, et al., Org. Lett. 20 (2018) 2787-2791;
      (h) Z. Liu, H. Xu, T. Yao, J. Zhang, L. Liu, Org. Lett. 21 (2019) 7539-7543;
      (i) G.M. Nan, X. Li, T.Y. Yao, et al., Org. Biomol. Chem. 18 (2020) 1780-1784;
      (j) J.Y. Wang, W.J. Hao, S.J. Tu, B. Jiang, Org. Chem. Front. 7 (2020) 1743-1778.

    11. [11]

      (a) M. Ke, Q. Song, Adv. Synth. Catal. 359 (2017) 384-389;
      (b) Q.Y. Wu, Q.Q. Min, G.Z. Ao, F. Liu, Org. Biomol. Chem. 16 (2018) 6391-6394;
      (c) Q.Y. Wu, G.Z. Ao, F. Liu, Org. Chem. Front. 5 (2018) 2061-2064;
      (d) W. Zhang, C. Yang, Z.P. Zhang, X. Li, J.P. Cheng, Org. Lett. 21 (2019) 4137-4142;
      (e) H.D. Zuo, W.J. Hao, C.F. Zhu, et al., Org. Lett. 22 (2020) 4471-4477.

    12. [12]

      (a) P. Bisseret, N. Blanchard, 2013 Org. Biomol. Chem., 115393-5398;
      (b) A.S. Deeming, E.J. Emmett, C.S. Richards-Taylor, M.C. Willis, 2014 Synthesis (Mass), 462701-2710;
      (c) G. Liu, C. Fan, J. Wu, 2015 Org. Biomol. Chem., 131592-1599;
      (d) E.J. Emmett, M.C. Willis, 2015 Asian J. Org. Chem., 4602-611;
      (e) D. Zheng, J. Wu, Sulfur Dioxide Insertion Reactions for Organic Synthesis, Nature Springer, Berlin, 2017;
      (f) G. Qiu, K. Zhou, L. Gao, J. Wu, 2018 Org. Chem. Front., 5691-705;
      (g) K. Hofman, N.W. Liu, G. Manolikakes, 2018 Chem. Eur. J., 2411852-11863;
      (h) G. Qiu, L. Lai, J. Cheng, J. Wu, 2018 Chem. Commun., 5410405-10414;
      (i) G. Qiu, K. Zhou, J. Wu, 2018 Chem. Commun., 5412561-12569;
      (j) S. Ye, G. Qiu, J. Wu, 2019 Chem. Commun., 551013-1019;
      (k) S. Ye, M. Yang, J. Wu, 2020 Chem. Commun., 564145-4155;
      (l) S. Ye, X. Li, W. Xie, J. Wu, 2020 Eur. J. Org. Chem. 1274-1287.

    13. [13]

      (a) X. Wang, L. Xue, Z. Wang, Org. Lett. 16 (2014) 4056-4058;
      (b) N.W. Liu, S. Liang, G. Manolikakes, Adv. Synth. Catal. 359 (2017) 1308-1319;
      (c) H. Wang, S. Sun, J. Cheng, Org. Lett. 19 (2017) 5844-5847;
      (d) N. von Wolff, J. Char, X. Frogneux, T. Cantat, Angew. Chem. Int. Ed. 56 (2017) 5616-5619;
      (e) J. Sheng, Y. Li, G. Qiu, Org. Chem. Front. 4 (2017) 95-100;
      (f) Y. Wang, L. Deng, J. Zhou, et al., Adv. Synth. Catal. 360 (2018) 1060-1065;
      (g) A.L. Tribby, I. Rodríguez, S. Shariffudin, N.D. Ball, J. Org. Chem. 82 (2017) 2294-2299.

    14. [14]

      (a) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (b) J. Zhang, Y. An, J. Wu, Chem. Eur. J. 23 (2017) 9477-9480;
      (c) T. Liu, D. Zheng, Z. Li, J. Wu, Adv. Synth. Catal. 359 (2017) 2653-2659;
      (d) Y. An, J. Wu, Org. Lett. 19 (2017) 6028-6031;
      (e) T. Liu, D. Zheng, Y. Ding, X. Fan, J. Wu, Chem. Asian J. 12 (2017) 465-469;
      (f) Y. An, J. Zhang, H. Xia, J. Wu, Org. Chem. Front. 4 (2017) 1318-1321;
      (g) X. Wang, T. Liu, Q. Zhong, J. Wu, Org. Chem. Front. 4 (2017) 2455-2458;
      (h) T. Liu, D. Zheng, J. Wu, Org. Chem. Front. 4 (2017) 1079-1083;
      (i) J. Zhang, K. Zhou, J. Wu, Org. Chem. Front. 5 (2018) 813-816;
      (j) T. Liu, D. Zheng, Z. Li, J. Wu, Adv. Synth. Catal. 360 (2018) 865-869;
      (k) J. Zhang, F. Zhang, L. Lai, et al., Chem. Commun. 54 (2018) 3891-3894;
      (l) Zhou K., J. Zhang, G. Qiu, J. Wu, Org. Lett. 21 (2019) 275-278;
      (m) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (n) X. Wang, Y. Lin, J.B. Liu, et al., Chin. J. Chem. 38 (2020) 1098-1102;
      (o) F.S. He, Y. Yao, W. Xie, J. Wu, Chem. Commun. 56 (2020) 9469-9472;
      (p) T. Zhu, J. Wu, Org. Lett. 22(18) (2020) 7094-7097;
      (q) J. Huang, F. Ding, Z. Chen, G. Yang, J. Wu, Org. Chem. Front. 8 (2021) 1461-1465;
      (r) Y. Yao, Z. Yin, F.S. He, et al., Chem. Commun. 57 (2021) 2883-2886.

    15. [15]

      (a) K. Zhou, J. Huang, J. Wu, G. Qiu, Chin. Chem. Lett. 32 (2021) 37-39;
      (b) T. Liu, Y. Ding, X. Fan, J. Wu, Org. Chem. Front. 5 (2018) 3153-3157;
      (c) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898;
      (d) X. Gong, M. Yang, J.B. Liu, F.S. He, J. Wu, Org. Chem. Front. 7 (2020) 938-943.

    16. [16]

      (a) X. Wang, Y. Kuang, S. Ye, J. Wu, Chem. Commun. 55 (2019) 14962-14964;
      (b) T. Zhu, J. Shen, Y. Sun, J. Wu, Chem. Commun. 57 (2021) 915-918.

    17. [17]

      (a) X. Wang, M. Yang, W. Xie, X. Fan, J. Wu, Chem. Commun. 55 (2019) 6010-6013;
      (b) X. Wang, H. Li, G. Qiu, J. Wu, Chem. Commun. 55 (2019) 2062-2065;
      (c) X. Wang, M. Yang, W. Xie, X. Fan, J. Wu, Chem. Commun. 55 (2019) 6010-6013;
      (d) X. Gong, M. Yang, J.B. Liu, et al., Green Chem 22 (2020) 1906-1910.

    18. [18]

      (a) Y. Zong, Y. Lang, M. Yang, et al., Org. Lett. 21 (2019) 1935-1938;
      (b) F.S. He, M. Yang, S. Ye, J. Wu, Chin. Chem. Lett. 32 (2021) 461-464;
      (c) K. Zhou, J. Chen, J. Wu, Chin. Chem. Lett. 31 (2020) 2996-2998;
      (d) J. Chen, L. Wu, J. Wu, Chin. Chem. Lett. 31 (2020) 2993-2995.

    19. [19]

      (a) D. Richter, N. Hampel, T. Singer, A.R. Ofial, H. Mayr, Eur. J. Org. Chem. (2009) 3203-3211;
      (b) Y.J. Fan, L. Zhou, S. Li, Org. Chem. Front. 5 (2018) 1820-1824.

    20. [20]

      K.K. Chauhan, C.G. Frost, I. Love, D. Waite, Synlett 10 (1999) 1743-1744.
       

    21. [21]

      P. Goswami, S. Sharma, G. Singh, R.V. Anand, J. Org. Chem. 83 (2018) 4213-4220.

  • 加载中
    1. [1]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    2. [2]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    3. [3]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    4. [4]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    5. [5]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    6. [6]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    7. [7]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    8. [8]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    9. [9]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    12. [12]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    13. [13]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    14. [14]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    15. [15]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    16. [16]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    17. [17]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    18. [18]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    19. [19]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(16)
  • Abstract views(501)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return