Triphenylamine (TPA) radical cations and related macrocycles
-
* Corresponding authors.
E-mail addresses: xlshi@chem.ecnu.edu.cn (X. Shi), hbyang@chem.ecnu.edu.cn (H.-B. Yang).
Citation:
Lijun Mao, Manfei Zhou, Xueliang Shi, Hai-Bo Yang. Triphenylamine (TPA) radical cations and related macrocycles[J]. Chinese Chemical Letters,
;2021, 32(11): 3331-3341.
doi:
10.1016/j.cclet.2021.05.004
A.D. McNaught, A. Williamson, International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology, 2nd ed., Blackwell Science, Cambridge, 1997
M. Hayyan, M.A. Hashim, I.M. AlNashef, Chem. Rev. 116 (2016) 3029–3085
doi: 10.1021/acs.chemrev.5b00407
G. Herzberg, The Spectra and Structures of Simple Free Radicals: An Introduction to Molecular Spectroscopy, Dover Publications, Inc., Mineola, NY, 2003
Z.V. Todres, Ion-radical Organic Chemistry: Principles and Applications, 2ed, CRC Press Taylor & Francis Group, Boca Raton, Florida, USA, 2008
R.G. Hicks, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, Wiley, New York, 2010
D. Griller, K.U. Ingold, Acc. Chem. Res. 9 (1976) 13–19
doi: 10.1021/ar50097a003
U. Geiser, J.A. Schlueter, Chem. Rev. 104 (2004) 5203–5241
doi: 10.1021/cr0306844
T. Nishinaga, K. Komatsu, Org. Biomol. Chem. 3 (2005) 561–569
doi: 10.1039/b418872a
D. Sakamaki, S. Ghosh, S. Seki, Mater. Chem. Front. 3 (2019) 2270–2282
doi: 10.1039/c9qm00488b
B. Tang, J. Zhao, J.F. Xu, X. Zhang, Chem. Sci. 11 (2020) 1192–1204
doi: 10.1039/c9sc06143f
M. Gomberg, J. Am. Chem. Soc. 22 (1900) 757–771
doi: 10.1021/ja02049a006
G.F. Huo, Q. Tu, X.L. Zhao, et al., Chin. Chem. Lett. 31 (2020) 1847–1850
doi: 10.1016/j.cclet.2020.02.010
X. Ai, E.W. Evans, S. Dong, et al., Nature 563 (2018) 536–540
doi: 10.1038/s41586-018-0695-9
H. Guo, Q. Peng, X.K. Chen, et al., Nat. Mater. 18 (2019) 977–984
doi: 10.1038/s41563-019-0433-1
Y. Wang, S. Qiu, S. Xie, et al., J. Am. Chem. Soc. 141 (2019) 2169–2176
doi: 10.1021/jacs.8b13884
C. Jiang, Y. Bang, X. Wang, et al., Chem. Commun. 54 (2018) 2389–2392
doi: 10.1039/C8CC00378E
O. Armet, J. Veciana, C. Rovira, et al., J. Phys. Chem. 91 (1987) 5608–5616
doi: 10.1021/j100306a023
C.F. Koelsch, J. Am. Chem. Soc. 79 (1957) 4439–4441
doi: 10.1021/ja01573a053
S.H. Jang, P. Gopalan, J.E. Jackson, B. Kahr, Angew. Chem. Int. Ed. Engl. 33 (1994) 775–777
doi: 10.1002/anie.199407751
D.H. Reid, Tetrahedron 3 (1958) 339–352
doi: 10.1016/0040-4020(58)80039-3
O.L. Lebedev, S.N. Kazarnovskii, Zh. Obshch. Khim. 30 (1960) 1631–1635
J. Lu, Y. Chen, X. Wen, et al., J. Phys. Chem. A103 (1999) 6998–7007
X. Pan, X. Chen, T. Li, Y. Li, X. Wang, J. Am. Chem. Soc. 135 (2013) 3414–3417
doi: 10.1021/ja4012113
J.E. Leffler, G.B. Watts, T. Tanigaki, et al., J. Am. Chem. Soc. 92 (1970) 6825–6830
doi: 10.1021/ja00726a018
G. Tan, X. Wang, Acc. Chem. Res. 50 (2017) 1997–2006
doi: 10.1021/acs.accounts.7b00229
E. Moulin, J.J. Armao IV, N. Giuseppone, Acc. Chem. Res. 52 (2019) 975–983
doi: 10.1021/acs.accounts.8b00536
J. Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 116 (2016) 14675–14725
doi: 10.1021/acs.chemrev.6b00432
T.A. Schaub, T. Mekelburg, P.O. Dral, et al., Chem. Eur. J. 26 (2020) 3264–3269
doi: 10.1002/chem.202000355
M. Kuratsu, M. Kozaki, K. Okada, Angew. Chem. Int. Ed. 44 (2005) 4056–4058
doi: 10.1002/anie.200500397
X. Zheng, X. Wang, Y. Qiu, et al., J. Am. Chem. Soc. 135 (2013) 14912–14915
doi: 10.1021/ja407318h
I. Krossing, I. Raabe, Angew. Chem. Int. Ed. 43 (2004) 2066–2090
doi: 10.1002/anie.200300620
T.A. Engesser, M.R. Lichtenthaler, M. Schleep, I. Krossing, Chem. Soc. Rev. 45 (2016) 789–899
doi: 10.1039/C5CS00672D
I.M. Riddlestone, A. Kraft, J. Schaefer, I. Krossing, Angew. Chem. Int. Ed. 57 (2018) 13982–14024
doi: 10.1002/anie.201710782
A. Ito, J. Mater. Chem. C4 (2016) 4614–4625
doi: 10.1039/C6TC00973E
Q. Kong, D. Zhu, Y. Quan, et al., Chem. Mater. 19 (2007) 3309–3318
doi: 10.1021/cm0701254
Y. Zhao, K. Jiang, W. Xu, D. Zhu, Tetrahedron 68 (2012) 9113–9118
doi: 10.1016/j.tet.2012.08.027
K. Chen, H.R. Zhao, Z.K. Fan, et al., Org. Lett. 17 (2015) 1413–1416
doi: 10.1021/acs.orglett.5b00292
S.Q. Zhang, Z.Y. Liu, W.F. Fu, et al., ACS Nano11 (2017) 11701–11713
doi: 10.1021/acsnano.7b06961
I. Saha, E.B. Wang, C.A. Parish, K. Ghosh, ChemistrySelect2 (2017) 4794–4799
doi: 10.1002/slct.201700756
L. Vacareanu, O.I. Negru, M. Grigoras, J. Polym. Sci. A: Polym. Chem. 56 (2018) 2565–2573
doi: 10.1002/pola.29236
L. Yuan, Y. Han, T. Tao, H. Phan, C. Chi, Angew. Chem. Int. Ed. 57 (2018) 9023–9027
doi: 10.1002/anie.201804720
B. Zhang, C. Wang, L. Wang, Y. Chen, J. Mater. Chem. C6 (2018) 4023–4029
A.J. Sindt, M.D. Smith, S. Berens, et al., Chem. Commun. 55 (2019) 5619–5622
doi: 10.1039/c9cc01725a
H. Wieland, Chem. Ber. 40 (1907) 4260–4281
doi: 10.1002/cber.19070400442
M.R. Talipov, M.M. Hossain, A. Boddeda, et al., Org. Biomol. Chem. 14 (2016) 2961–2968
doi: 10.1039/C6OB00140H
T. Michinobu, E. Tsuchida, H. Nishide, Bull. Chem. Soc. Jpn. 73 (2000) 1021–1027
doi: 10.1246/bcsj.73.1021
J.A. Christensen, B.T. Phelan, S. Chaudhuri, et al., J. Am. Chem. Soc. 140 (2018) 5290–5299
doi: 10.1021/jacs.8b01778
S. Hiraoka, T. Okamoto, M. Kozaki, et al., J. Am. Chem. Soc. 126 (2004) 58–59
doi: 10.1021/ja0367748
A. Ito, M. Urabe, K. Tanaka, Angew. Chem., Int. Ed. 42 (2003) 921–924
doi: 10.1002/anie.200390244
Y. Hirao, H. Ishizaki, A. Ito, et al., Eur. J. Org. Chem. 2007 (2007) 186–190
doi: 10.1002/ejoc.200600666
M. Shasti, S.F. Völker, S. Collavini, et al., Org. Lett. 21 (2019) 3261–3264
doi: 10.1021/acs.orglett.9b00988
L. Skorka, P. Kurzep, T. Chauvire, et al., J. Phys. Chem. B121 (2017) 4293–4298
doi: 10.1021/acs.jpcb.7b01531
E. Moulin, F. Niess, M. Maaloum, et al., Angew. Chem. Int. Ed. 49 (2010) 6974–6978
doi: 10.1002/anie.201001833
C. Su, F. Yang, L. Ji, et al., J. Mater. Chem. A2 (2014) 20083–20088
doi: 10.1039/C4TA03413A
J. Liu, W. Liu, E. Aydin, et al., ACS Appl. Mater. Interfaces12 (2020) 23874–23884
doi: 10.1021/acsami.0c03660
P. Reinold, K. Bruchlos, S. Ludwigs, Polym. Chem. 8 (2017) 7351–7359
doi: 10.1039/C7PY01688C
L. Yuan, W. Feng, K. Yamato, et al., J. Am. Chem. Soc. 126 (2004) 11120–11121
doi: 10.1021/ja0474547
R. Jasti, J. Bhattacharjee, J.B. Neaton, C.R. Bertozzi, J. Am. Chem. Soc. 130 (2008) 17646–17647
doi: 10.1021/ja807126u
D. Cao, Y. Kou, J. Liang, et al., Angew. Chem. Int. Ed. 48 (2009) 9721–9723
doi: 10.1002/anie.200904765
S. Dong, Y. Luo, X. Yan, et al., Angew. Chem. Int. Ed. 50 (2011) 1905–1909
doi: 10.1002/anie.201006999
W. Si, L. Chen, X.B. Hu, et al., Angew. Chem. Int. Ed. 50 (2011) 12564–12568
doi: 10.1002/anie.201106857
S. Lee, C.H. Chen, A.H. Flood, Nat. Chem. 5 (2013) 704–710
doi: 10.1038/nchem.1668
S. Sun, J.B. Shi, Y.P. Dong, et al., Chin. Chem. Lett. 24 (2013) 987–992
doi: 10.1016/j.cclet.2013.07.014
X. Li, B. Li, L. Chen, et al., Angew. Chem. Int. Ed. 54 (2015) 11147–11152
doi: 10.1002/anie.201505278
W. Wang, L.J. Chen, X.Q. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 5597–5601
doi: 10.1073/pnas.1500489112
G.W. Zhang, P.F. Li, Z. Meng, et al., Angew. Chem. Int. Ed. 55 (2016) 5304–5308
doi: 10.1002/anie.201600911
S.T.J. Ryan, J.D. Barrio, R. Suardíaz, et al., Angew. Chem. Int. Ed. 55 (2016) 16096–16100
doi: 10.1002/anie.201607693
Y.C. Zhang, L. Chen, H. Wang, Chin. Chem. Lett. 27 (2016) 817–821
doi: 10.1016/j.cclet.2016.03.041
L. Mao, W. Pan, Y. Fu, et al., Org. Lett. 19 (2017) 18–21
doi: 10.1021/acs.orglett.6b03125
G.D. Bo, G. Dolphijn, C.T. McTernan, D.A. Leigh, J. Am. Chem. Soc. 139 (2017) 8455–8457
doi: 10.1021/jacs.7b05640
B. Jiang, W. Wang, Y. Zhang, et al., Angew. Chem. Int. Ed. 56 (2017) 14438–14442
doi: 10.1002/anie.201707209
W.T. Li, W.J. Qu, X. Zhu, et al., Sci. Chin. Chem. 60 (2017) 754–760
doi: 10.1007/s11426-016-0438-4
L. Liang, Y. Chen, X.M. Chen, Y. Zhang, Y. Liu, Chin. Chem. Lett. 29 (2018) 989–991
doi: 10.1016/j.cclet.2017.12.022
L. Shen, N. Cao, L. Tong, et al., Angew. Chem. Int. Ed. 57 (2018) 16486–16490
doi: 10.1002/anie.201811025
Q. He, N.J. Williams, J. Hyun, et al., Angew. Chem. Int. Ed. 57 (2018) 11924–11928
doi: 10.1002/anie.201805127
X.Q. Wang, W. Wang, W.J. Li, et al., Nat. Commun. 9 (2018) 3190
doi: 10.1038/s41467-018-05670-y
H.B. Liu, Q. Zhang, M.X. Wang, Angew. Chem. Int. Ed. 57 (2018) 6536–6540
doi: 10.1002/anie.201802650
H. Ke, L.P. Yang, Mo Xie, et al., Nat. Chem. 11 (2019) 470–477
doi: 10.1038/s41557-019-0235-8
X. Wu, P. Wang, P. Turner, et al., Chem5 (2019) 1210–1222
doi: 10.1016/j.chempr.2019.02.023
B. Li, B. Wang, X. Huang, et al., Angew. Chem. Int. Ed. 58 (2019), 3885–3889
doi: 10.1002/anie.201813972
D. Dai, Z. Li, J. Yang, et al., J. Am. Chem. Soc. 141 (2019) 4756–4763
doi: 10.1021/jacs.9b01546
L. Mao, Y. Hu, Q. Tu, et al., Nat. Commun. 11 (2020) 5806
doi: 10.1038/s41467-020-19677-x
X. Sheng, E. Li, Y. Zhou, et al., J. Am. Chem. Soc. 142 (2020) 6360–6364
doi: 10.1021/jacs.0c01274
L. Shen, N. Cao, L. Tong, et al., Angew. Chem. Int. Ed. 57 (2018) 16486–16490
doi: 10.1002/anie.201811025
T. Jiao, K. Cai, J.N. Nelson, et al., J. Am. Chem. Soc. 141 (2019) 16915–16922
doi: 10.1021/jacs.9b08926
B. Li, L. Cui, C. Li, Angew. Chem. Int. Ed. 59 (2020) 22012–22016
doi: 10.1002/anie.202010802
J. Chen, Y. Zhang, Z. Meng, et al., Chem. Sci. 11 (2020) 6275–6282
doi: 10.1039/d0sc01756f
O. Anamimoghadam, L.O. Jones, J.A. Cooper, et al., J. Am. Chem. Soc. 143 (2021) 163–175
doi: 10.1021/jacs.0c07148
Y. Ni, T.Y. Gopalakrishna, S. Wu, J. Wu, Angew. Chem. Int. Ed. 59 (2020) 7414–7418
doi: 10.1002/anie.202000188
L. Ren, T.Y. Gopalakrishna, I.H. Park, et al., Angew. Chem. Int. Ed. 59 (2020) 2230–2234
doi: 10.1002/anie.201911269
G. Li, T. Matsuno, Y. Han, et al., Angew. Chem. Int. Ed. 59 (2020) 9727–9735
doi: 10.1002/anie.202002447
M.A. Sabuj, M.M. Huda, N. Rai, iScience23 (2020) 101675
doi: 10.1016/j.isci.2020.101675
T.D. Selby, S.C. Blackstock, Org. Lett. 1 (1999) 2053–2055
doi: 10.1021/ol991040e
S.I. Hauck, K.V. Lakshmi, J.F. Hartwig, Org. Lett. 1 (1999) 2057–2060
doi: 10.1021/ol9912276
Akihiro Ito, Syuuzi Inoue, Yasukazu Hirao, et al., Chem. Commun. (2008) 3242–3244
doi: 10.1039/b805333b
D. Sakamaki, A. Ito, K. Furukawa, T. Kato, K. Tanaka, J. Org. Chem. 78 (2013) 2947–2956
doi: 10.1021/jo3026884
I. Kulszewicz-Bajer, V. Maurel, S. Gambarelli, et al., Phys. Chem. Chem. Phys. 11 (2009) 1362–1368
doi: 10.1039/b814957g
A. Ito, Y. Yokoyama, R. Aihara, et al., Angew. Chem. Int. Ed. 49 (2010) 8205–8208
doi: 10.1002/anie.201002165
T.F. Yang, K.Y. Chiu, H.C. Cheng, et al., J. Org. Chem. 77 (2012) 8627–8633
doi: 10.1021/jo301436g
D. Sakamaki, A. Ito, Y. Tsutsui, S. Seki, J. Org. Chem. 82 (2017) 13348–13358
doi: 10.1021/acs.joc.7b02437
R. Kurata, D. Sakamaki, A. Ito, Org. Lett. 19 (2017) 3115–3118
doi: 10.1021/acs.orglett.7b01229
W. Wang, C. Chen, C. Shu, et al., J. Am. Chem. Soc. 140 (2018) 7820–7826
doi: 10.1021/jacs.8b02415
Z. Fang, M. Samoc, R.D. Webster, A. Samoc, Y.H. Lai, Tetrahedron Lett. 53 (2012) 4885–4888
doi: 10.1016/j.tetlet.2012.07.003
S. Dong, T.Y. Gopalakrishna, Y. Han, C. Chi, Angew. Chem. Int. Ed. 58 (2019) 11742–11746
doi: 10.1002/anie.201905763
Y. Ni, T.Y. Gopalakrishna, H. Phan, et al., Nat. Chem. 12 (2020) 242–248
doi: 10.1038/s41557-019-0399-2
Y. Ni, F. Gordillo-Gámez, M.P. Alvarez, et al., J. Am. Chem. Soc. 142 (2020) 12730–12742
doi: 10.1021/jacs.0c04876
A.J. Sindt, B.A. DeHaven, D.W. Goodlett, et al., J. Am. Chem. Soc. 142 (2020) 502–511
doi: 10.1021/jacs.9b11518
G.F. Huo, X. Shi, Q. Tu, et al., J. Am. Chem. Soc. 141 (2019) 16014–16023
doi: 10.1021/jacs.9b08149
X.D. Xu, C.J. Yao, L.J. Chen, et al., Chem. Eur. J. 22 (2016) 5211–5218
doi: 10.1002/chem.201504480
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Shengwen Guan , Zhaotong Wei , Ningxu Han , Yude Wei , Bin Xu , Ming Wang , Junjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Wen-Hui Mi , Teng-Yu Huang , Yu-Fei Ao , Xu-Dong Wang , Qi-Qiang Wang , De-Xian Wang . Ultracycles consisting of macrocycles. Chinese Chemical Letters, 2024, 35(5): 109077-. doi: 10.1016/j.cclet.2023.109077
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Yiran Tao , Chunlei Dai , Zhaoxiang Xie , Xinru You , Kaiwen Li , Jun Wu , Hai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Jinlong Li , Ruixin Li , Jiahui Liu , Ji-Quan Liu , Jia Xu , Xianglin Zhou , Yefan Zhang , Kairui Wang , Lin Lei , Gang Xie , Fengmei Wang , Ying Yang , Liping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192
Pengfei Li , Chulin Qu , Fan Wu , Hu Gao , Chengyan Zhao , Yue Zhao , Zhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292
Jian-Rong Li , Jieying Hu , Lai-Hon Chung , Jilong Zhou , Parijat Borah , Zhiqing Lin , Yuan-Hui Zhong , Hua-Qun Zhou , Xianghua Yang , Zhengtao Xu , Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971