Citation: Xiaoli Han, Xiaodi Nie, Yiman Feng, Bangguo Wei, Changmei Si, Guoqiang Lin. Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1, 3-oxazinan-2-ones[J]. Chinese Chemical Letters, ;2021, 32(11): 3526-3530. doi: 10.1016/j.cclet.2021.05.003 shu

Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1, 3-oxazinan-2-ones

    * Corresponding authors.
    E-mail addresses: bgwei1974@fudan.edu.cn (B. Wei), sicm@fudan.edu.cn (C. Si).
  • Received Date: 18 March 2021
    Revised Date: 1 May 2021
    Accepted Date: 6 May 2021
    Available Online: 15 May 2021

Figures(7)

  • An efficient approach to functionalized 4, 6-disubstituted-and 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones skeleton has been developed through the reaction of semicyclic N, O-acetals 4a and 4b with 1, 1- disubstituted ethylenes 5 or 8. As a result of such a [4 + 2] cycloaddition process, 4, 6, 6-trisubstituted- 1, 3-oxazinan-2-ones 6aa, 6af-6au, 7ba, 7bf-7bw and 6, 6-spiro containing 1, 3-oxazinan-2-ones 9ad, 9ae, 10ba-10bg were obtained in 36%-96% yields and with moderate to excellent diastereoselectivities. In addition, the synthesis of (±)-norallosedamine 12 could be conveniently achieved from the cycloadduct 7bf.
  • 加载中
    1. [1]

      (a) C. Bian, J. Wang, X. Zhou, W. Wu, R. Guo, Chem. Biodiversity 17 (2020). e2000186;
      (b) T.P. Cushnie, B. Cushnie, A.J. Lamb, Int. J. Antimicrob. Agents 44 (2014) 377-386;
      (c) T.B. Hua, C. Xiao, Q.Q. Yang, J.R. Chen, Chin. Chem. Lett. 31 (2020) 311-323;
      (d) X. Liang, X.Z. Yang, L. Chen, et al., Med. Chem. Res. 30 (2021) 1-14;
      (e) X.D. Wu, X.N. Li, L.Y. Peng, Q.S. Zhao, J. Org. Chem. 85 (2020) 6803-6807;
      (f) D.D. Zhang, J.B. Xu, Y.Y. Fan, et al., J. Org. Chem. 85 (2020) 3742-3747.

    2. [2]

      (a) N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Molecules 25 (2020) 1909;
      (b) A.M. Malebari, D. Fayne, S.M. Nathwani, et al., Eur. J. Med. Chem. 189 (2020) 112050;
      (c) M. Baiula, P. Galletti, G. Martelli, et al., J. Med. Chem. 59 (2016) 9721-9742.

    3. [3]

      (a) A.A. Aly, A.A. Hassan, M.M. Makhlouf, S. Braese, Molecules 25 (2020) 3036;
      (b) A.M.S. El-Sharief, Y.A. Ammar, A. Belal, et al., Bioorg. Chem. 85 (2019) 399-412;
      (c) A.A. Ivashchenko, Y.A. Ivanenkov, A.G. Koryakova, et al., Eur. J. Med. Chem. 189 (2020) 112064;
      (d) S. Zhao, C. Pi, Y. Ye, L. Zhao, Y. Wei, Eur. J. Med. Chem. 180 (2019) 524-535.

    4. [4]

      (a) P. Jain, P. Verma, G. Xia, J.Q. Yu, Nat. Chem. 9 (2017) 140-144;
      (b) P. Majumdar, A. Pati, M. Patra, R.K. Behera, A.K. Behera, Chem. Rev. 114 (2014) 2942-2977;
      (c) P. Singh, R.K. Varshnaya, R. Dey, P. Banerjee, Adv. Synth. Catal. 362 (2020) 1447-1484;
      (d) H. Matsuzaki, N. Takeda, M. Yasui, et al., Org. Lett. 22 (2020) 9249-9252;
      (e) Y. He, J. Yang, Q. Liu, X. Zhang, X. Fan, J. Org. Chem. 85 (2020) 15600-15609.

    5. [5]

      (a) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 118 (2018) 3752-3832;
      (b) S. Xu, H.M. Holst, S.B. McGuire, N.J. Race, J. Am. Chem. Soc. 142 (2020) 8090-8096.

    6. [6]

      (a) G.M. Larson, B.T. Schaneberg, A.T. Sneden, J. Nat. Prod. 62 (1999) 361-363;
      (b) F. Taft, K. Harmrolfs, I. Nickeleit, et al., Chem. Eur. J. 18 (2012) 880-886;
      (c) R.B. Woodward, B.W. Au-Yeung, P. Balaram, et al., J. Am. Chem. Soc. 103 (1981) 3213-3215;
      (d) J.M. Cassady, K.K. Chan, H.G. Floss, E. Leistner, Chem. Pharm. Bull. 52 (2004) 1-26.

    7. [7]

      (a) W. Yang, Y. Wang, A. Lai, et al., J. Med. Chem. 63 (2020) 7226-7242;
      (b) Z. Xu, C.M. Tice, W. Zhao, et al., J. Med. Chem. 54 (2011) 6050-6062;
      (c) Y. Zhang, J.P. Wu, G. Li, et al., J. Org. Chem. 81 (2016) 2665-2669;
      (d) L. Zhuang, C.M. Tice, Z. Xu, et al., Bioorg. Med. Chem. 25 (2017) 3649-3657;
      (e) S.D. Young, S.F. Britcher, L.O. Tran, et al., Antimicrob. Agents Chemother. 39 (1995) 2602-2605.

    8. [8]

      (a) S.G. Davies, A.C. Garner, P.M. Roberts, et al., Org. Biomol. Chem. 4 (2006) 2753-2768;
      (b) J.R. Ella-Menye, V. Sharma, G. Wang, J. Org. Chem. 70 (2005) 463-469;
      (c) J.W. Hilborn, Z.H. Lu, A.R. Jurgens, et al., Tetrahedron Lett 42 (2001) 8919-8921;
      (d) G.S. Poindexter, K.M. Strauss, Synth. Commun. 23 (1993) 1329-1338;
      (e) S.C. Schmid, I.A. Guzei, J.M. Schomaker, Angew. Chem. Int. Ed. 56 (2017) 12229-12233;
      (f) M. Schulze, Synth. Commun. 40 (2010) 3415-3422;
      (g) Y.F. Wang, T. Izawa, S. Kobayashi, M. Ohno, J. Am. Chem. Soc. 104 (1982) 6465-6466.

    9. [9]

      (a) H. Pan, H. Huang, W. Liu, H. Tian, Y. Shi, Org. Lett. 18 (2016) 896-899;
      (b) S. Mangelinckx, Y. Nural, H.A. Dondas, et al., Tetrahedron 66 (2010) 4115-4124.

    10. [10]

      (a) U. Jakob, W. Bannwarth, Tetrahedron Lett 56 (2015) 6340-6344;
      (b) R. Robles-Machín, J. Adrio, J.C. Carretero, J. Org. Chem. 71 (2006) 5023-5026.

    11. [11]

      (a) K. Narasaka, Y. Ukaji, S. Yamazaki, Bull. Chem. Soc. Jpn. 59 (1986) 525-533;
      (b) M. Hirama, T. Shigemoto, Y. Yamazaki, S. Ito, J. Am. Chem. Soc. 107 (1985) 1797-1798;
      (c) A.J. Borah, P. Phukan, J. Chem. Sci. 125 (2013) 1503-1510.

    12. [12]

      S.A. Reed, A.R. Mazzotti, M.C. White, J. Am. Chem. Soc. 131 (2009) 11701-11706.  doi: 10.1021/ja903939k

    13. [13]

      T.J. Donohoe, C.J.R. Bataille, W. Gattrell, J. Kloesges, E. Rossignol, Org. Lett. 9 (2007) 1725-1728.  doi: 10.1021/ol070430v

    14. [14]

      (a) A.J. Boddy, C.J. Cordier, K. Goldberg, et al., Org. Lett. 21 (2019) 1818-1822;
      (b) T. Buyck, Q. Wang, J. Zhu, J. Am. Chem. Soc. 136 (2014) 11524-11528;
      (c) N. Uddin, J.S. Ulicki, F.H. Foersterling, M.M. Hossain, Tetrahedron Lett 52 (2011) 4353-4356;
      (d) R. Yousefi, T.J. Struble, J.L. Payne, et al., J. Am. Chem. Soc. 141 (2019) 618-625.

    15. [15]

      (a) A.M. Jones, C.E. Banks, Beilstein J. Org. Chem. 10 (2014) 3056-3072;
      (b) U. Martínez-Estibalez, A. Gómez-SanJuan, O. García-Calvo, et al., Eur. J. Org. Chem. 2011 (2011) 3610-3633;
      (c) J. Royer, M. Bonin, L. Micouin, Chem. Rev. 104 (2004) 2311-2352;
      (d) M.G. Vinogradov, O.V. Turova, S.G. Zlotin, Russ. Chem. Rev. 86 (2017) 1-17;
      (e) A.K. Sahu, R. Unnava, S. Shit, A.K. Saikia, J. Org. Chem. 85 (2020) 1961-1971.

    16. [16]

      (a) H.E. Zaugg, Synthesis (1970) 49-73;
      (b) H.E. Zaugg, Synthesis (1984) 85-110;
      (c) S. Pyne, A. Yazici, Synthesis 3 (2009) 339-368;
      (d) A. Yazici, S.G. Pyne, Synthesis 4 (2009) 513-541;
      (e) G.M. Ryder, U. Wille, A.C. Willis, S.G. Pyne, Org. Biomol. Chem. 17 (2019) 7025-7035;
      (f) T. Thaima, A. Yazici, C. Auranwiwat, et al., Org. Biomol. Chem. 19 (2021) 259-272.

    17. [17]

      P. Wu, T.E. Nielsen, Chem. Rev. 117 (2017) 7811-7856.  doi: 10.1021/acs.chemrev.6b00806

    18. [18]

      (a) M. Das, A.K. Saikia, J. Org. Chem. 83 (2018) 6178-6185;
      (b) K. Indukuri, R. Unnava, M.J. Deka, A.K. Saikia, J. Org. Chem. 78 (2013) 10629-10641;
      (c) Y. Krishna, K. Shilpa, F. Tanaka, Org. Lett. 21 (2019) 8444-8448;
      (d) Y. Zheng, L. Andna, O. Bistri, L. Miesch, Org. Lett. 22 (2020) 6771-6775;
      (e) S. Hanessian, M. Tremblay, Org. Lett. 6 (2004) 4683-4686;
      (f) S. Hanessian, M. Tremblay, J.F.W. Petersen, J. Am. Chem. Soc. 126 (2004) 6064-6071.

    19. [19]

      (a) M. Sugiura, H. Hagio, R. Hirabayashi, S. Kobayashi, Synlett 2001 (2001) 1225-1228;
      (b) N. Lu, L. Wang, Z. Li, W. Zhang, Beilstein J. Org. Chem. 8 (2012) 192-200;
      (c) H. Richter, R. Frohlich, C.G. Daniliuc, O. Garcia Mancheno, Angew. Chem., Int. Ed. 51 (2012) 8656-8660;
      (d) A. Yazici, U. Wille, S.G. Pyne, J. Org. Chem. 81 (2016) 1434-1449.

    20. [20]

      (a) S.M. Weinreb, P.M. Scola, Chem. Rev. 89 (1989) 1525-1534;
      (b) T. Shimizu, K. Tanino, I. Kuwajima, Tetrahedron Lett 41 (2000) 5715-5718;
      (c) D.M. Tomazela, L.A.B. Moraes, R.A. Pilli, M.N. Eberlin, M.G.M. D'Oca, J. Org. Chem. 67 (2002) 4652-4658;
      (d) S. Suga, Y. Tsutsui, A. Nagaki, J.I. Yoshida, Bull. Chem. Soc. Jpn. 78 (2005) 1206-1217;
      (e) S. Suga, D. Yamada, J. -i. Yoshida, Chem. Lett. 39 (2010) 404-406;
      (f) S. Suga, A. Nagaki, Y. Tsutsui, J.I. Yoshida, Org. Lett. 5 (2003) 945-947.

    21. [21]

      (a) P.M. Esch, H. Hiemstra, W.N. Speckamp, Tetrahedron Lett 29 (1988) 367-370;
      (b) P.M. Esch, H. Hiemstra, W. Nico Speckamp, Tetrahedron 48 (1992) 3445-3462.

    22. [22]

      (a) X.M. Wang, Y.W. Liu, R.J. Ma, C.M. Si, B.G. Wei, J. Org. Chem. 84 (2019) 11261-11267;
      (b) C. Wang, Z.Y. Mao, Y.W. Liu, et al., Adv. Synth. Catal. 362 (2020) 822-831;
      (c) R.C. Liu, W. Huang, J.Y. Ma, B.G. Wei, G.Q. Lin, Tetrahedron Lett 50 (2009) 4046-4049;
      (d) Y.W. Liu, R.J. Ma, J.H. Yan, Z. Zhou, B.G. Wei, Org. Biomol. Chem. 16 (2018) 771-779;
      (e) P. Han, Z.Y. Mao, C.M. Si, et al., J. Org. Chem. 84 (2019) 914-923;
      (f) Z.D. Chen, Z. Chen, Q.E. Wang, C.M. Si, B.G. Wei, Tetrahedron Lett 61 (2020) 152051;
      (g) X.L. Han, X.D. Nie, Z.D. Chen, et al., J. Org. Chem. 85 (2020) 13567-13578;
      (h) Y.X. Zhang, L.Y. Chen, J.T. Sun, C.M. Si, B.G. Wei, J. Org. Chem. 85 (2020) 12603-12613.

    23. [23]

      (a) B.A.D. Neto, A.A.M. Lapis, A.B. Bernd, D. Russowsky, Tetrahedron 65 (2009) 2484-2496;
      (b) R.A. Pilli, L.C. Dias, Synth. Commun. 21 (1991) 2213-2229;
      (c) B.V. Subba Reddy, S. Ghanty, N.S.S. Reddy, Y.J. Reddy, J.S. Yadav, Synth. Commun. 44 (2014) 1658-1663;
      (d) C.Y. Yu, O. Meth-Cohn, Tetrahedron Lett 40 (1999) 6665-6668;
      (e) J.S. Yadav, Y. Jayasudhan Reddy, P. Adi Narayana Reddy, B.V. Subba Reddy, Org. Lett. 15 (2013) 546-549.

  • 加载中
    1. [1]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    2. [2]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    8. [8]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    9. [9]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    15. [15]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    16. [16]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    17. [17]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    18. [18]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    19. [19]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    20. [20]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

Metrics
  • PDF Downloads(6)
  • Abstract views(541)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return