The applications of semiconductor materials in air batteries
-
* Corresponding author.
E-mail address: sujuanhu@yahoo.com (S. Hu).
Citation:
Yingjian Yu, Sujuan Hu. The applications of semiconductor materials in air batteries[J]. Chinese Chemical Letters,
;2021, 32(11): 3277-3287.
doi:
10.1016/j.cclet.2021.04.049
M. Meinshausen, Z.R.J. Nicholls, J. Lewis, et al., Geosci. Model Dev. 13 (2020) 3571-3605.
doi: 10.5194/gmd-13-3571-2020
S. Maddukuri, D. Malka, M.S. Chae, et al., Electrochim. Acta 354 (2020) 136771.
doi: 10.1016/j.electacta.2020.136771
M. Armand, P. Axmann, D. Bresser, et al., J. Power Sources 479 (2020) 228708.
doi: 10.1016/j.jpowsour.2020.228708
A. Chitre, D. Freake, L. Lander, J. Edge, M.M. Titirici, Batteries Supercaps 3 (2020) 1125.
doi: 10.1002/batt.202000231
D. Stampatori, P.P. Raimondi, M. Noussan, Energies 13 (2020) 2638.
doi: 10.3390/en13102638
E. Fan, L. Li, Z. Wang, et al., Chem. Rev. 120 (2020) 7020-7063.
doi: 10.1021/acs.chemrev.9b00535
H. Lv, H. Huang, C. Huang, et al., Appl. Catal. B 283 (2021) 119634.
doi: 10.1016/j.apcatb.2020.119634
Y. Kim, W.M. Seong, A. Manthiram, Energy Storage Mater. 34 (2021) 250-259.
doi: 10.1016/j.ensm.2020.09.020
Y. Tian, G. Zeng, A. Rutt, et al., Chem. Rev. 121 (2021) 1623-1669.
doi: 10.1021/acs.chemrev.0c00767
F. Wu, J. Maier, Y. Yu, Chem. Soc. Rev. 49 (2020) 1569-1614.
doi: 10.1039/C7CS00863E
Y. Zhang, T. -. T. Zuo, J. Popovic, Mater. Today 33 (2020) 56-74.
doi: 10.1016/j.mattod.2019.09.018
J. Zhang, G. Zhang, Z. Chen, et al., Energy Storage Mater. 26 (2020) 513-533.
doi: 10.1016/j.ensm.2019.11.025
Q. Gou, S. Zhao, J. Wang, M. Li, J. Xue, Nano-Micro Lett. 12 (2020) 98.
doi: 10.1007/s40820-020-00430-4
T. Wang, C. Li, X. Xie, et al., ACS Nano 14 (2020) 16321-16347.
doi: 10.1021/acsnano.0c07041
C. Yang, S. Xin, L. Mai, Y. You, Adv. Energy Mater. 11 (2021) 2000974.
doi: 10.1002/aenm.202000974
C. Zhang, H. Zhao, Y. Lei, Energy Environ. Mater. 3 (2020) 105-120.
doi: 10.1002/eem2.12059
Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Energy Storage Mater. 27 (2020) 478-505.
doi: 10.1016/j.ensm.2019.12.011
H.F. Wang, Q. Xu, Matter 1 (2019) 565-595.
doi: 10.1016/j.matt.2019.05.008
N. Chawla, Mater. Today Chem. 12 (2019) 324-331.
doi: 10.1016/j.mtchem.2019.03.006
X. Chen, I. Ali, L. Song, et al., Renew. Sustain. Energy Rev. 134 (2020) 110085.
doi: 10.1016/j.rser.2020.110085
J. Yu, B.Q. Li, C.X. Zhao, Q. Zhang, Energy Environ. Sci. 13 (2020) 3253-3268.
doi: 10.1039/D0EE01617A
Y. Wang, Y.C. Lu, Energy Storage Mater. 28 (2020) 235-246.
doi: 10.1016/j.ensm.2020.03.007
W.J. Kwak, D. Sharon Rosy, et al., Chem. Rev. 120 (2020) 6626-6683.
doi: 10.1021/acs.chemrev.9b00609
T. Liu, J.P. Vivek, E.W. Zhao, et al., Chem. Rev. 120 (2020) 6558-6625.
doi: 10.1021/acs.chemrev.9b00545
S. Zhao, L. Li, F. Li, S. -. L. Chou, Electrochem. Commun. 118 (2020) 106797.
doi: 10.1016/j.elecom.2020.106797
H. Yadegari, X. Sun, Trends Chem. 2 (2020) 241-253.
doi: 10.1016/j.trechm.2019.12.003
X. Xu, K.S. Hui, D.A. Dinh, K.N. Hui, H. Wang, Mater. Horiz. 6 (2019) 1306-1335.
doi: 10.1039/C8MH01375F
F. Duffner, N. Kronemeyer, J. Tubke, et al., Nat. Energy 6 (2021) 123-134.
doi: 10.1038/s41560-020-00748-8
D. Stock, S. Dongmo, J. Janek, D. Schröder, ACS Energy Lett. 4 (2019) 1287-1300.
doi: 10.1021/acsenergylett.9b00510
T. Zhou, N. Zhang, C. Wu, Y. Xie, Energy Environ. Sci. 13 (2020) 1132-1153.
doi: 10.1039/C9EE03634B
L. Lei, Y. Sun, X. Wang, Y. Jiang, J. Li, Front. Mater. 7 (2020) 96.
doi: 10.3389/fmats.2020.00096
J. Hao, X. Li, X. Zeng, et al., Energy Environ. Sci. 13 (2020) 3917-3949.
doi: 10.1039/D0EE02162H
Z. Zhao, X. Fan, J. Ding, et al., ACS Energy Lett. 4 (2019) 2259-2270.
doi: 10.1021/acsenergylett.9b01541
D. Dobhal P. Goel, R.C. Sharma, J. Energy Storage 28 (2020) 101287.
doi: 10.1016/j.est.2020.101287
Y. Hu, D. Sun, B. Luo, L. Wang, Energy Technol 7 (2019) 86-106.
doi: 10.1002/ente.201800550
X. Zhang, R. Lv, W. Tang, et al., Adv. Funct. Mater. 30 (2020) 2004187.
doi: 10.1002/adfm.202004187
Y. Liu, Q. Sun, W. Li, et al., Green Energy Environ. 2 (2017) 246-277.
doi: 10.1016/j.gee.2017.06.006
T. Zhang, Z. Tao, J. Chen, Mater. Horiz. 1 (2014) 196-206.
doi: 10.1039/C3MH00059A
Y. Sun, X. Liu, Y. Jiang, et al., J. Mater. Chem. A 7 (2019) 18183-18208.
doi: 10.1039/C9TA05094A
Z. Guo, S. Zhao, T. Li, et al., Adv. Energy Mater. 10 (2020) 1903591.
doi: 10.1002/aenm.201903591
H. Weinrich, Y.E. Durmus, H. Tempel, H. Kungl, R.A. Eichel, Materials (Basel) 12 (2019) 2134.
doi: 10.3390/ma12132134
R. Bansal, P. Menon, R.C. Sharma, SN Appl. Sci. 2 (2020) 1141.
doi: 10.1007/s42452-020-2925-7
J.D. Ocon, G.H.A. Abrenica, J. Lee, ChemElectroChem 3 (2016) 242-246.
doi: 10.1002/celc.201500488
J. Li, C. Yue, Y. Yu, et al., J. Mater. Chem. A 1 (2013) 14344-14349.
doi: 10.1039/c3ta13537c
Y. Yu, C. Yue, S. Sun, et al., ACS Appl. Mater. Interfaces 6 (2014) 5884-5890.
doi: 10.1021/am500782b
Y. Yu, C. Yue, X. Lin, et al., ACS Appl. Mater. Interfaces 8 (2016) 3992-3999.
doi: 10.1021/acsami.5b11287
Y. Yu, Y. Wang, S. Zhang, et al., Nano Energy 61 (2019) 604-610.
doi: 10.1016/j.nanoen.2019.05.014
J. Mei, T. Liao, J. Liang, et al., Adv. Energy Mater. 10 (2020) 1901997.
doi: 10.1002/aenm.201901997
J.W. Jung, S.H. Cho, J.S. Nam, I.D. Kim, Energy Storage Mater. 24 (2020) 512-528.
doi: 10.1016/j.ensm.2019.07.006
M. Balaish, J.W. Jung, I.D. Kim, Y. Ein-Eli, Adv. Funct. Mater. 30 (2020) 1808303.
doi: 10.1002/adfm.201808303
S. Yang, Y. Cheng, X. Xiao, H. Pang, Chem. Eng. J. 384 (2020) 123294.
doi: 10.1016/j.cej.2019.123294
J. Liu, H. Liu, H. Chen, et al., Adv. Sci. 7 (2019) 1901614.
F. Shi, X. Zhu, W. Yang, Chin. J. Catal. 41 (2020) 390-403.
doi: 10.1016/S1872-2067(19)63514-X
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhourse, Adv. Energy Mater. 10 (2020) 2003018.
doi: 10.1002/aenm.202003018
M. Luo, W. Sun, B.B. Xu, H. Pan, Y. Jiang, Adv. Energy Mater. 11 (2021) 2002762.
doi: 10.1002/aenm.202002762
Y. Wang, Q. Cao, C. Guan, C. Cheng, Small 16 (2020) 2002902.
doi: 10.1002/smll.202002902
A. Zahoor, Z.K. Ghouri, S. Hashmi, et al., ACS Sustainable Chem. Eng. 7 (2019) 14288-14320.
doi: 10.1021/acssuschemeng.8b06351
Y. Guo, Y.N. Chen, H. Cui, Z. Zhou, Chin. J. Catal. 40 (2019) 1298-1310.
doi: 10.1016/S1872-2067(19)63349-8
Z. Fang, X. Hu, D. Yu, Chempluschem 85 (2020) 600-612.
doi: 10.1002/cplu.201900608
P. Tan, X. Xiao, Y. Dai, C. Cheng, M. Ni, Renew. Sustain. Energy Rev. 127 (2020) 109877.
doi: 10.1016/j.rser.2020.109877
A. Gurung, Q. Qiao, Joule 2 (2018) 1217-1230.
doi: 10.1016/j.joule.2018.04.006
G. Cohn, D. Starosvetsky, R. Hagiwara, D.D. Macdonald, Y. Ein-Eli, Electrochem. Commun. 11 (2009) 1916-1918.
doi: 10.1016/j.elecom.2009.08.015
G. Cohn, Y. Ein-Eli, J. Power Sources 195 (2010) 4963-4970.
doi: 10.1016/j.jpowsour.2010.02.070
Y.E. Durmus, S. Jakobi, T. Beuse, Ö. Aslanbas, et al., J. Electrochem. Soc. 164 (2017) A2310-A2320.
doi: 10.1149/2.0301712jes
Y.E. Durmus, C. Roitzheim, H. Tempel, et al., J. Appl. Electrochem. 50 (2020) 93-109.
doi: 10.1007/s10800-019-01372-5
G. Cohn, D.D. Macdonald, Y. Ein-Eli, ChemSusChem 4 (2011) 1124-1129.
doi: 10.1002/cssc.201100169
G. Cohn, A. Altberg, D.D. Macdonald, Y. Ein-Eli, Electrochim. Acta 58 (2011) 161-164.
doi: 10.1016/j.electacta.2011.09.026
X. Zhong, H. Zhang, Y. Liu, et al., ChemSusChem 5 (2012) 177-180.
doi: 10.1002/cssc.201100426
S. Sarwar, M. Kim, G. Baek, I. Oh, H. Lee, Bull. Korean Chem. Soc. 37 (2016) 997-1003.
doi: 10.1002/bkcs.10808
D.W. Park, S. Kim, J.D. Ocon, et al., ACS Appl. Mater. Interfaces 7 (2015) 3126-3132.
doi: 10.1021/am507360e
Y.E. Durmus, S.S.M. Guerrero, Ö. Aslanbas, et al., Electrochim. Acta 265 (2018) 292-302.
doi: 10.1016/j.electacta.2018.01.145
Y.E. Durmus, Ö. Aslanbas, S. Kayser, et al., Electrochim. Acta 225 (2017) 215-224.
doi: 10.1016/j.electacta.2016.12.120
J.D. Ocon, J.W. Kim, S. Uhm, B.S. Mun, J. Lee, Phys. Chem. Chem. Phys. 15 (2013) 6333-6338.
doi: 10.1039/c3cp50885d
Y. Yu, D. Chen, S. Gao, et al., RSC Adv. 9 (2019) 39582-39588.
doi: 10.1039/C9RA06725F
J.D. Ocon, J.W. Kim, G.H.A. Abrenica, J.K. Lee, J. Lee, Phys. Chem. Chem. Phys. 16 (2014) 22487-22494.
doi: 10.1039/C4CP02134G
Y. Dong, S. Li, S. Hong, L. Wang, B. Wang, Chin. Chem. Lett. 31 (2020) 635-642.
doi: 10.1016/j.cclet.2019.08.021
J. Tian, D. Liu, J. Li, et al., Chin. Chem. Lett. 32 (2021) 2427-2432.
doi: 10.1016/j.cclet.2021.01.022
Y. Ren, H. Wang, T. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2243-2248.
doi: 10.1016/j.cclet.2020.12.050
W. Sun, F. Wang, B. Zhang, et al., Science 371 (2021) 46-51.
doi: 10.1126/science.abb9554
J. Hu, C. Zhai, M. Zhu, Chin. Chem. Lett. 32 (2021) 1348-1358.
doi: 10.1016/j.cclet.2020.09.049
Y. Chen, S. Lan, M. Zhu, Chin. Chem. Lett. 32 (2021) 2052-2056.
doi: 10.1016/j.cclet.2020.11.016
M. Zhang, J. He, Y. Chen, et al., Chin. Chem. Lett. 31 (2020) 2721-2724.
doi: 10.1016/j.cclet.2020.05.001
S. Hu, Y. Yu, Y. Guan, et al., Chin. Chem. Lett. 31 (2020) 2839-2842.
doi: 10.1016/j.cclet.2020.08.021
H. Zhang, J. He, C. Zhai, M. Zhu, Chin. Chem. Lett. 30 (2019) 2338-2342.
doi: 10.1016/j.cclet.2019.07.021
M. Nehra, N. Dilbaghi, G. Marrazza, Nano Energy 76 (2020) 104991.
doi: 10.1016/j.nanoen.2020.104991
X. Li, D. Liu, X. Mo, K. Li, J. Solid State Electrochem. 23 (2019) 2843-2852.
doi: 10.1007/s10008-019-04377-4
J. Li, Z. Meng, D.J.L. Brett, et al., ACS Appl. Mater. Interfaces 12 (2020) 42696-42703.
doi: 10.1021/acsami.0c10151
X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Carbon N Y 157 (2020) 234-243.
doi: 10.1016/j.carbon.2019.10.023
T. Li, Y. Lu, S. Zhao, Z. Gao, Y. Song, J. Mater. Chem. A 6 (2018) 3730-3737.
doi: 10.1039/C7TA11171A
S. Pakseresht, T. Cetinkaya, A.W.M. Al-Ogaili, M. Halebi, H. Akbulut, Ceram. Int. 47 (2021) 3994-4005.
doi: 10.1016/j.ceramint.2020.09.264
F. Li, Y. Wang, R.S. Bai, et al., J. Power Sources 483 (2021) 229180.
doi: 10.1016/j.jpowsour.2020.229180
G. Wang, S. Zhang, R. Qian, Z. Wen, ACS Appl. Mater. Interfaces 10 (2018) 41398-41406.
doi: 10.1021/acsami.8b15774
R. Zheng, C. Shu, Z. Hou, et al., ACS Appl. Mater. Interfaces 11 (2019) 46696-46704.
doi: 10.1021/acsami.9b14783
L. Zhang, J. Xiong, Y.H. Qin, C.W. Wang, Carbon N Y 150 (2019) 475-484.
doi: 10.1016/j.carbon.2019.05.044
X. Han, W. Zhang, X. Ma, et al., Adv. Mater. 31 (2019) 1808281.
doi: 10.1002/adma.201808281
Y. Tian, J. Qian L. Xu, et al., Carbon N Y 146 (2019) 763-771.
doi: 10.1016/j.carbon.2019.02.046
J.W. Jung, J.S. Jang, T.G. Yun, K.R. Yoon, I.D. Kim, ACS Appl. Mater. Interfaces 10 (2018) 6531-6540.
doi: 10.1021/acsami.7b15421
D. Chen, C. Chen, Z.M. Baiyee, Z. Shao, F. Ciucci, Chem. Rev. 115 (2015) 9869-9921.
doi: 10.1021/acs.chemrev.5b00073
W.G. Hardin, J.T. Mefford, D.A. Slanac, et al., Chem. Mater. 26 (2014) 3368-3376.
doi: 10.1021/cm403785q
J.G. Kim, Y. Kim, Y. Noh, et al., ACS Appl. Mater. Interfaces 10 (2018) 5429-5439.
doi: 10.1021/acsami.7b14599
Y. Qiao, Y. Liu, K. Jiang, et al., Small Methods 2 (2018) 1700284.
doi: 10.1002/smtd.201700284
Y. Feng, H. Xue, T. Wang, et al., ACS Sustain. Chem. Eng. 7 (2019) 5931-5939.
doi: 10.1021/acssuschemeng.8b05944
Z. Zhu, X. Shi, G. Fan, F. Li, J. Chen, Angew. Chem. 131 (2019) 19197-19202.
doi: 10.1002/ange.201911228
S. Tong, C. Luo, J. Li, et al., Angew. Chem. 132 (2020) 21095-21099.
doi: 10.1002/ange.202007906
M. Li, X. Wang, F. Li, et al., Adv. Mater. 32 (2020) 1907098.
doi: 10.1002/adma.201907098
H. Xue, T. Wang, Y. Feng, et al., Nanoscale 12 (2020) 18742-18749.
doi: 10.1039/D0NR04956E
H. Song, S. Wang, X. Song, et al., Energy Environ. Sci. 13 (2020) 1205-1211.
doi: 10.1039/C9EE04039K
S. Pakseresht, T. Cetinkaya, A.W.M. Al-Ogaili, M. Halebi, H. Akbulut, Ceram. Int. 47 (2021) 3994-4005.
doi: 10.1016/j.ceramint.2020.09.264
Q. Lv, Z. Zhu, S. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 1941-1947.
doi: 10.1021/jacs.0c11400
J. Lv, S.C. Abbas, Y. Huang, et al., Nano Energy 43 (2018) 130-137.
doi: 10.1016/j.nanoen.2017.11.020
K. Wang, Z. Mo, S. Tang, et al., J. Mater. Chem. A 7 (2019) 14129-14135.
doi: 10.1039/C9TA04253A
D. Zhu, Q. Zhao, G. Fan, et al., Angew. Chem. Int. Ed. 58 (2019) 12460-12464.
doi: 10.1002/anie.201905954
Z. Fang, Y. Zhang, X. Hu, et al., Angew. Chem. Int. Ed. 58 (2019) 9248-9253.
doi: 10.1002/anie.201903805
X. Liu, Y. Yuan, J. Liu, et al., Nat. Commun. 10 (2019) 4767.
doi: 10.1038/s41467-019-12627-2
D. Du, S. Zhao, Z. Zhu, F. Li, J. Chen, Angew. Chem. Int. Ed. 59 (2020) 18140-18144.
doi: 10.1002/anie.202005929
M. Yu, X. Ren, L. Ma, Y. Wu, Nat. Commun. 5 (2014) 5111.
doi: 10.1038/ncomms6111
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Ruizhi Yang , Xia Li , Weiping Guo , Zixuan Chen , Hongwei Ming , Zhong-Zhen Luo , Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Juhong Zhou , Hui Zhao , Ping Han , Ziyue Wang , Yan Zhang , Xiaoxia Mao , Konglin Wu , Shengjue Deng , Wenxiang He , Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
Yi Zhou , Yanzhen Liu , Yani Yan , Zonglin Yi , Yongfeng Li , Cheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yu ZHANG , Fangfang ZHAO , Cong PAN , Peng WANG , Liangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391
Jinlong Li , Ruixin Li , Jiahui Liu , Ji-Quan Liu , Jia Xu , Xianglin Zhou , Yefan Zhang , Kairui Wang , Lin Lei , Gang Xie , Fengmei Wang , Ying Yang , Liping Cao . A TOC- and deposition-free electrochromic window driven by redox flow battery. Chinese Chemical Letters, 2024, 35(12): 110355-. doi: 10.1016/j.cclet.2024.110355
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171