Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction
-
* Corresponding authors.
E-mail addresses: leiht2017@snnu.edu.cn (H. Lei), ruicao@snnu.edu.cn (R. Cao).
Citation: Qingxin Zhang, Yabo Wang, Yanzhi Wang, Shujiao Yang, Xuan Wu, Bin Lv, Ni Wang, Yimei Gao, Xiaoran Xu, Haitao Lei, Rui Cao. Electropolymerization of cobalt porphyrins and corroles for the oxygen evolution reaction[J]. Chinese Chemical Letters, ;2021, 32(12): 3807-3810. doi: 10.1016/j.cclet.2021.04.048
W. Zhang, W. Lai, R. Cao, Chem. Rev. 117(2017) 3717-3797.
doi: 10.1021/acs.chemrev.6b00299
H. Lei, H. Fang, Y. Han, et al., ACS Catal. 5(2015) 5145-5153.
doi: 10.1021/acscatal.5b00666
B. Wang, X. Cui, J. Huang, R. Cao, Q. Zhang, Chin. Chem. Lett. 29(2018) 1757-1767.
doi: 10.1016/j.cclet.2018.11.021
H. Lei, X. Li, J. Meng, et al., ACS Catal. 9(2019) 4320-4344.
doi: 10.1021/acscatal.9b00310
X.P. Zhang, A. Chandra, Y.M. Lee, et al., Chem. Soc. Rev. 50(2021) 4804-4811.
doi: 10.1039/D0CS01456G
Y. Liu, Y. Han, Z. Zhang, et al., Chem. Sci. 10(2019) 2613-2622.
doi: 10.1039/C8SC04529A
R. Blankenship, D. Tiede, J. Barber, et al., Science 332(2011) 805-809.
doi: 10.1126/science.1200165
D. Gust, T. Moore, A. Moore, Acc. Chem. Res. 42(2009) 1890-1898.
doi: 10.1021/ar900209b
Y. Tong, H. Liu, M. Dai, L. Xiao, X. Wu, Chin. Chem. Lett. 31(2020) 2295-2299.
doi: 10.1016/j.cclet.2020.03.029
G. Xu, H. Lei, G. Zhou, et al., Chem. Commun 55(2019) 12647-12650.
doi: 10.1039/C9CC06916J
M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110(2010) 6446-6473.
doi: 10.1021/cr1002326
X. Gao, Y. Chen, T. Sun, et al., Small 15(2019) e1904579.
doi: 10.1002/smll.201904579
H. Lei, A. Han, F. Li, et al., Phys. Chem. Chem. Phys. 16(2014) 1883-1893.
doi: 10.1039/C3CP54361G
X. Guo, N. Wang, X. Li, et al., Angew. Chem. Int. Ed. 59(2020) 8941-8946.
doi: 10.1002/anie.202002311
H.J. Choi, N. Ashok Kumar, J.B. Baek, Nanoscale 7(2015) 6991-6998.
doi: 10.1039/C4NR06831A
Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci. 4(2011) 3167-3192.
doi: 10.1039/c0ee00558d
Y. Nie, L. Li, Z. Wei, Chem. Soc. Rev. 44(2015) 2168-2201.
doi: 10.1039/C4CS00484A
Y. Deng, L. Yang, Y. Wang, et al., Chin. Chem. Lett. 32(2021) 511-515.
doi: 10.1016/j.cclet.2020.03.076
C. Wang, L. Jin, H. Shang, et al., Chin. Chem. Lett. 32(2021) 2108-2116.
doi: 10.1016/j.cclet.2020.11.051
H. Qin, Y. Wang, B. Wang, et al., J. Energy Chem. 53(2021) 77-81.
doi: 10.1016/j.jechem.2020.05.015
T. Nakazono, A.R. Parent, K. Sakai, Chem. Commun. 49(2013) 6325-6327.
doi: 10.1039/c3cc43031f
D. Wang, J.T. Groves, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 15579-15584.
doi: 10.1073/pnas.1315383110
J.D. Blakemore, R.H. Crabtree, G.W. Brudvig, Chem. Rev. 115(2015) 12974-13005.
doi: 10.1021/acs.chemrev.5b00122
D.K. Dogutan, Jr. McGuire R., D.G. Nocera, J. Am. Chem. Soc. 133(2011) 9178-9180.
doi: 10.1021/ja202138m
D.G. Hetterscheid, J.N. Reek, Angew. Chem. Int. Ed. 51(2012) 9740-9747.
doi: 10.1002/anie.201202948
M.D. Kärkäs, O. Verho, E.V. Johnston, B. Åkermar, Chem. Rev. 114(2014) 11863-12001.
doi: 10.1021/cr400572f
M.M. Najafpour, G. Renger, M. Holynska, et al., Chem. Rev. 116(2016) 2886-2936.
doi: 10.1021/acs.chemrev.5b00340
W. Schofberger, F. Faschinger, S. Chattopadhyay, et al., Angew. Chem. Int. Ed. 55(2016) 2350-2355.
doi: 10.1002/anie.201508404
W. Sinha, A. Mizrahi, A. Mahammed, B. Tumanskii, Z. Gross, Inorg. Chem. 57(2018) 478-485.
doi: 10.1021/acs.inorgchem.7b02696
B. Wurster, D. Grumelli, D. Hötger, R. Gutzler, K. Kern, J. Am. Chem. Soc. 138(2016) 3623-3626.
doi: 10.1021/jacs.5b10484
L. Xu, H. Lei, Z. Zhang, et al., Phys. Chem. Chem. Phys. 19(2017) 9755-9761.
doi: 10.1039/C6CP08495H
Y. Han, Y. Wu, W. Lai, R. Cao, Inorg. Chem. 54(2015) 5604-5613.
doi: 10.1021/acs.inorgchem.5b00924
Z. Liang, H. Guo, G. Zhou, et al., Angew. Chem. Int. Ed. 60(2021) 8472-8476.
doi: 10.1002/anie.202016024
L. Xie, X.P. Zhang, B. Zhao, et al., Angew. Chem. Int. Ed. 60(2021) 7576-7581.
doi: 10.1002/anie.202015478
Z. Liang, H. Wang, H. Zheng, W. Zhang, R. Cao, Chem. Soc. Rev. 50(2021) 2540-2581.
doi: 10.1039/D0CS01482F
L. Xie, X. Li, B. Wang, et al., Angew. Chem. Int. Ed. 58(2019) 18883-18887.
doi: 10.1002/anie.201911441
L. Xie, J. Tian, Y. Ouyang, et al., Angew. Chem. Int. Ed. 59(2020) 15844-15848.
doi: 10.1002/anie.202003836
X. Li, H. Lei, J. Liu, et al., Angew. Chem. Int. Ed. 57(2018) 15070-15075.
doi: 10.1002/anie.201807996
Z. Chen, J.J. Concepcion, H. Luo, et al., J. Am. Chem. Soc. 132(2010) 17670-17673.
doi: 10.1021/ja107347n
E.L. Demeter, S.L. Hilburg, N.R. Washburn, T.J. Collins, J.R. Kitchin, J. Am. Chem. Soc. 136(2014) 5603-5606.
doi: 10.1021/ja5015986
S. Gentil, D. Serre, C. Philouze, et al., Angew. Chem. Int. Ed. 55(2016) 2517-2520.
doi: 10.1002/anie.201509593
I. Hijazi, T. Bourgeteau, R. Cornut, et al., J. Am. Chem. Soc. 136(2014) 6348-6354.
doi: 10.1021/ja500984k
M. Jahan, Q. Bao, K.P. Loh, J. Am. Chem. Soc. 134(2012) 6707-6713.
doi: 10.1021/ja211433h
P. Kang, S. Zhang, T.J. Meyer, M. Brookhart, Angew. Chem. Int. Ed. 53(2014) 8709-8713.
doi: 10.1002/anie.201310722
A. Maurin, M. Robert, J. Am. Chem. Soc. 138(2016) 2492-2495.
doi: 10.1021/jacs.5b12652
S. Kim, D. Jang, J. Lim, et al., ChemSusChem 10(2017) 3473-3481.
doi: 10.1002/cssc.201701038
M. Tavakkoli, M. Nosek, J. Sainio, et al., ACS Catal. 7(2017) 8033-8041.
doi: 10.1021/acscatal.7b02878
P.D. Tran, A. Le Goff, J. Heidkamp, et al., Angew. Chem. Int. Ed. 50(2011) 1371-1374.
doi: 10.1002/anie.201005427
P.J. Wei, G.Q. Yu, Y. Naruta, J.G. Liu, Angew. Chem. Int. Ed. 53(2014) 6659-6663.
doi: 10.1002/anie.201403133
J. Wang, L. Xu, T. Wang, et al., Adv. Energy Mater. (2021) 2003575.
D.L. Ashford, A.M. Lapides, A.K. Vannucci, et al., J. Am. Chem. Soc. 136(2014) 6578-6581.
doi: 10.1021/ja502464s
A. Friedman, L. Landau, S. Gonen, Z. Gross, L. Elbaz, ACS Catal. 8(2018) 5024-5031.
doi: 10.1021/acscatal.8b00876
X.M. Hu, Z. Salmi, M. Lillethorup, et al., Chem. Commun. 52(2016) 5864-5867.
doi: 10.1039/C6CC00982D
A. Bettelheinv, B.A. White, S.A. Raybuck, R.W. Murray, Inorg. Chem. 26(1987) 1009-1017.
doi: 10.1021/ic00254a011
W. Chen, J. Akhigbe, C.B. Ckner, C.M. Li, Y. Lei, J. Phys. Chem. C 114(2010) 8633-8638.
doi: 10.1021/jp101011f
M.G. Walter, C.C. Wamser, J. Phys. Chem. C 114(2010) 7563-7574.
doi: 10.1021/jp910016h
N. Maiti, J. Lee, S.J. Kwon, et al., Polyhedron 25(2006) 1519-1530.
doi: 10.1016/j.poly.2005.10.016
N. Maiti, J. Lee, Y. Do, H.S. Shin, D.G. Churchill, J. Chem. Crystallogr. 35(2005) 949-955.
doi: 10.1007/s10870-005-5178-9
A.N. Marianov, Y. Jiang, ACS Sustainable Chem. Eng. 7(2019) 3838-3848.
doi: 10.1021/acssuschemeng.8b04735
A.N. Marianov, Y. Jiang, Appl. Catal. B 244(2019) 881-888.
doi: 10.1016/j.apcatb.2018.11.084
Xue Zhao , Rui Zhao , Qian Liu , Henghui Chen , Jing Wang , Yongfeng Hu , Yan Li , Qiuming Peng , John S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Xinyu Huai , Jingxuan Liu , Xiang Wu . Cobalt-Doped NiMoO4 Nanosheet for High-performance Flexible Supercapacitor. Chinese Journal of Structural Chemistry, 2023, 42(10): 100158-100158. doi: 10.1016/j.cjsc.2023.100158
Abiduweili Sikandaier , Yukun Zhu , Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242
Ling Fang , Sha Wang , Shun Lu , Fengjun Yin , Yujie Dai , Lin Chang , Hong Liu . Efficient electroreduction of nitrate via enriched active phases on copper-cobalt oxides. Chinese Chemical Letters, 2024, 35(4): 108864-. doi: 10.1016/j.cclet.2023.108864
Xiaoling WANG , Hongwu ZHANG , Daofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Jialiang XU , Jiabin CUI . Recent biological applications of corroles: From diagnosis to therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2303-2317. doi: 10.11862/CJIC.20240245
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515