Citation: Lintao Wu, Chun Han, Xiaobi Jing, Yong Yao. Rim-differentiated pillar[5]arenes[J]. Chinese Chemical Letters, ;2021, 32(11): 3322-3330. doi: 10.1016/j.cclet.2021.04.046 shu

Rim-differentiated pillar[5]arenes

    * Corresponding author.
    E-mail address: yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 25 February 2021
    Revised Date: 20 April 2021
    Accepted Date: 22 April 2021
    Available Online: 28 April 2021

Figures(18)

  • Pillar[5]arenes, designed and prepared by Ogoshi et al. in 2008 initially, refer to fifth classical macrocyclics. Among a wide range of pillar[5]arenes, rim-differentiated pillar[5]arenes containing five identical substituents on one rim and five different identical groups on the other rims are considered the most noteworthy type of pillar[5]arenes. As compared with the perfunctionalized pillar[5]arene, the self-assembly properties of rim-differentiated pillar[5]arenes have more varieties. On the other hand, in comparison with other types of pillar[5]arenes, the rim-differentiated pillar[5]arenes exhibit a more rigid symmetrical structure. In the present review, the synthetic methods, host-guest interactions, self-assembly properties and applications of rim-differentiated pillar[5]arenes are summarized. Hopefully, this review will be conducive to researchers in macrocyclic supramolecular chemistry.
  • 加载中
    1. [1]

      (a) V.T. D'Souza, K.B. Lipkowitz, Chem. Rev. 98 (1998) 1741-1742;
      (b) P.Y. Li, Y. Chen, C.H. Chen, Y. Liu, Chem. Commun. 55 (2019) 11790-11793;
      (c) Y. Kobayashi, A. Harada, H. Yamaguchi, Chem. Commun. 56 (2020) 13619-13622.

    2. [2]

      (a) W.A. Freeman, W.L. Mock, N.Y. Shih, J. Am. Chem. Soc. 103 (1981) 7367-7368;
      (b) T. Jiang, G. Qu, J. Wang, et al., Chem. Sci. 11 (2020) 3531-3537;
      (c) K. Kim, N. Selvapalam, Y.H. Ko, et al., Chem. Soc. Rev. 36 (2007) 267-279.

    3. [3]

      (a) S.B. Nimse, T. Kim, Chem. Soc. Rev. 42 (2013) 366-386;
      (b) M. Giuliani, I. Morbioli, F. Sansone, A. Casnati, Chem. Commun. 51 (2015) 14140-14159.

    4. [4]

      (a) T. Ogoshi, S. Kanai, S. Fujinami, et al., J. Am. Chem. Soc. 130 (2008) 5022-5025;
      (b) D. Cao, Y. Kou, J. Liang, et al., Angew. Chem. Int. Ed. 48 (2009) 9721-9723;
      (c) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54 (2018) 13006-13009;
      (d) J. Wu, J. Tian, L. Rui, W. Zhang, Chem. Commun. 54 (2018) 7629-7632;
      (e) X. Li, Z. Li, Y.W. Yang, Adv. Mater. 30 (2018) 1800177;
      (f) H. Li, R. Wei, G.H. Yan, et al., ACS Appl. Mater. Interfaces 10 (2018) 4910-4920;
      (g) B. Hua, W. Zhou, Z. Yang, et al., J. Am. Chem. Soc. 140 (2018) 15651-15654;
      (h) T. Ogoshi, T. Furuta, Y. Hamada, et al., Mater. Chem. Front. 2 (2018) 597-602;
      (i) Y. Wang, M. Jin, Z. Chen, et al., Chem. Commun. 56 (2020) 10642-10645;
      (j) B. Li, L. Cui, C. Li, Angew. Chem. Int. Ed. 59 (2020) 22012-22016;
      (k) G. Sun, W. Qian, J. Jiao, et al., J. Mater. Chem. A 8 (2020) 9590-9596;
      (l) Y. Cai, Z. Zhang, Y. Ding, et al., Chin. Chem. Lett. 32 (2021) 1267-1279.

    5. [5]

      (a) N.L. Strutt, H. Zhang, S.T. Schneebeli, J.F. Stodart, Acc. Chem. Res. 47 (2014) 2631-2642;
      (b) L. Gao, B. Zheng, W. Chen, C.A. Schalley, Chem. Commun. 51 (2015) 14901-14904; (c) X.Y. Hu, L. Gao, S. Mosel, et al., Small 14 (2018) 1803952;
      (d) L. Gao, B. Zheng, Y. Yao, F. Huang, Soft Matter 9 (2013) 7314-7319;
      (e) H. Liang, B. Hua, F. Xu, et al., J. Am. Chem. Soc. 142 (2020) 19772-19778;
      (f) X.Y. Hu, X. Wu, S. Wang, et al., Polym. Chem. 4 (2013) 4292-4297;
      (g) M. Ni, Y. Guan, L. Wu, et al., Tetrahedron Lett. 53 (2012) 6409-6413;
      (h) R. Chen, H. Jiang, H. Gu, et al., Org. Lett. 17 (2015) 4160-4163;
      (i) Y. Chang, J.Y. Chen, J. Yang, et al., ACS Appl. Mater. Interfaces 11 (2019) 38497-38502;
      (j) N.L. Strutt, S.T. Schneebeli, J.F. Stoddart, Supramol. Chem. 25 (2013) 596-608;
      (k) J. Ye, R. Zhang, W. Yang, et al., Chin. Chem. Lett. 31 (2020) 1550-1553;
      (l) Y. Cao, Y. Chen, Z. Zhang, et al., Chin. Chem. Lett. 32 (2021) 349-352;
      (m) S. Fu, G. An, H. Sun, et al., Chem. Commun. 53 (2017) 9024-9027.

    6. [6]

      (a) Y. Yao, X. Wei, J. Chen, et al., Supramo. Chem. 30 (2018) 1–9;
      (b) Z. Li, Y.W. Yang, Acc. Mater. Res. (2021), doi:10.1021/accountsmr.1c00042;
      (c) X.Y. Lou, Y.W. Yang, Adv. Mater. 32 (2020) 2003263;
      (d) Y.F. Li, Z. Li, Q. Lin, Y.W. Yang, Nanoscale 12 (2020) 2180–2200;
      (e) N. Song, X.Y. Lou, L. Ma, H. Gao, Y.W. Yang, Theranostics 9 (2019) 3075–3093;
      (f) Y. Yao, J. Chen, C. Wang, J. Nantong University (Natural Science Edition) 18 (2019) 8–15.

    7. [7]

      Y. Kou, Z. Fu, H. Tao, et al., Eur. J. Org. Chem. (2010) 6464-6470.  doi: 10.1002/ejoc.201000718

    8. [8]

      Y. Yao, M. Xue, J. Chen, et al., J. Am. Chem. Soc. 134(2012) 15712-15715.  doi: 10.1021/ja3076617

    9. [9]

      M. Guo, X. Wang, C. Zhan, et al., J. Am. Chem. Soc. 140(2018) 74-77.  doi: 10.1021/jacs.7b10767

    10. [10]

      P. Demay-Drouhard, K. Du, K. Samanta, et al., Org. Lett. 21(2019) 3976-3980.  doi: 10.1021/acs.orglett.9b01123

    11. [11]

      T.F. Al-Azemi, M. Vinodh, F.H. Alipour, A.A. Mohamod, J. Org. Chem. 82(2017) 10945-10952.  doi: 10.1021/acs.joc.7b01837

    12. [12]

      J. Dong, L. Krasnova, M.G. Finn, K.B. Sharpless, Angew. Chem. Int. Ed. 53(2014) 9430-9448.  doi: 10.1002/anie.201309399

    13. [13]

      T. Ogoshi, K. Kick, T.A. Yamagishi, J. Am. Chem. Soc. 134(2012) 20146-20150.  doi: 10.1021/ja3091033

    14. [14]

      T. Ogoshi, S. Takashima, T.A. Yamagishi, J. Am. Chem. Soc. 140(2018) 1544-1548.  doi: 10.1021/jacs.7b12893

    15. [15]

      T. Xiao, L. Qi, W. Zhong, et al., Mater. Chem. Front. 3(2019) 1973-1993.  doi: 10.1039/C9QM00428A

    16. [16]

      D. He, W. Zhang, H. Deng, et al., Chem. Commun. 52(2016) 14145-14148.  doi: 10.1039/C6CC07595A

    17. [17]

      X. Shu, W. Chen, D. Hou, et al., Chem. Commun. 50(2014) 4820-4823.  doi: 10.1039/C4CC00800F

    18. [18]

      T. Nishimura, Y. Sanada, T. Matsuo, et al., Chem. Commun. 49(2013) 3052-3054.  doi: 10.1039/c3cc41186a

    19. [19]

      Y. Yao, P. Wei, S. Yue, et al., RSC Adv. 4(2014) 6042-6047.  doi: 10.1039/c3ra46430j

    20. [20]

      D. Mullangi, S. Nandi, S. Shalini, et al., Sci. Rep. 5(2015) 10876.  doi: 10.1038/srep10876

    21. [21]

      J. Zhou, M. Chen, G. Diao, ACS Appl. Mater. Interfaces 6(2014) 18538-18542.  doi: 10.1021/am5057147

    22. [22]

      G. Yu, Y. Ma, C. Han, et al., J. Am. Chem. Soc. 135(2013) 10310-10313.  doi: 10.1021/ja405237q

    23. [23]

      Y. Yao, M. Xue, Z. Zhang, et al., Chem. Sci. 4(2013) 3667-3672.  doi: 10.1039/c3sc51547h

    24. [24]

      G. Yu, Z. Zhang, C. Han, et al., Chem. Commun. 48(2012) 2958-2960.  doi: 10.1039/c2cc00125j

    25. [25]

      J. Zhou, M. Chen, J. Xie, G. Diao, ACS Appl. Mater. Interfaces 5(2013) 11218-11224.  doi: 10.1021/am403463p

    26. [26]

      N. Galanos, E. Gillon, A. Imberty, et al., Org. Biomol. Chem. 14(2016) 3476-3481.  doi: 10.1039/C6OB00220J

    27. [27]

      H. Zhang, X. Ma, K.T. Nguyen, Y. Zhao, ACS Nano 7(2013) 7853-7863.  doi: 10.1021/nn402777x

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    7. [7]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    8. [8]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    9. [9]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    10. [10]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    11. [11]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    14. [14]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    15. [15]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    16. [16]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    17. [17]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    18. [18]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    19. [19]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    20. [20]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

Metrics
  • PDF Downloads(4)
  • Abstract views(482)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return