Citation: Ningbo Li, Shitang Xu, Xueyan Wang, Li Xu, Jie Qiao, Zhiwu Liang, Xinhua Xu. Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition[J]. Chinese Chemical Letters, ;2021, 32(12): 3993-3997. doi: 10.1016/j.cclet.2021.04.026 shu

Ag2CO3-catalyzed efficient synthesis of internal or terminal propargylicamines and chalcones via A3-coupling under solvent-free condition

    * Corresponding author.
    E-mail address: xhx1581@hnu.edu.cn (X. Xu).
    1 These authors contributed equally to this work.
  • Received Date: 23 February 2021
    Revised Date: 14 April 2021
    Accepted Date: 14 April 2021
    Available Online: 20 April 2021

Figures(6)

  • Several simple, fast and practical protocols have been developed to synthesize internal or terminal propargylamines and chalcones via A3-coupling reaction of aldehydes, amines, and alkynes catalyzed by an easily available catalyst Ag2CO3 under solvent-free condition. The reaction proceeded smoothly to deliver various products in good-to-excellent yields with good functional group tolerance. Gram-scale preparation, bioactive molecule synthesis and asymmetric substrates have been demonstrated. Furthermore, plausible mechanisms for the synthesis of different products have been proposed.
  • 加载中
    1. [1]

      (a) D.S. Ermolat'ev, J.B. Bariwal, H.P.L. Steenackers, et al., Angew. Chem. Int. Ed. 49 (2010) 9465–9468;
      (b) W. Chen, Y.C. Zhang, P.H. Li, et al., Org. Chem. Front. 5 (2018) 855–859;
      (c) Y. Yamamoto, H. Hayashi, T. Saigoku, et al., J. Am. Chem. Soc. 127 (2005) 10804–10805;
      (d) P. Kaur, B. Kumar, K.K. GurjarJ, et al., J. Org. Chem. 85 (2020) 2231–2241;
      (e) X.W. He, M.Q. Xie, R.X. Li, et al., Org. Lett. 22 (2020) 4306–4310;
      (f) J.F. Cui, K.K. Kung, H.M. Ko, et al., Adv. Synth. Catal. 356 (2014) 2965–2973;
      (g) Z. Wang, L. Yang, H.L. Liu, et al., Chin. J. Org. Chem. 10 (2018) 2639–2647;
      (h) Y.Y. Liu, Arkivoc i, (2014) 1–20.

    2. [2]

      (a) K. Lauder, A. Toscani, N. Scalacci, et al., Chem. Rev. 117 (2017) 14091–14200;
      (b) S. Yan, S.G. Pan, T. Osako, et al., ACS Sustainable Chem. Eng. 7 (2019) 9097–9102;
      (c) F. Wang, H.D. Feng, H.Q. Li, et al., Chin. Chem. Lett. 31 (2020) 1558–1563;
      (d) J.Y. Zhang, X. Huang, Q.Y. Shen, et al., Chin. Chem. Lett. 29 (2018) 197–200;
      (e) M. Martinez-Amezaga, R.A. Giordano, D.N. Prada Gori, et al., Org. Biomol. Chem. 18 (2020) 2475–2486.

    3. [3]

      (a) T. Takahashi, F.Y. Bao, G.H. Gao, et al., Org. Lett. 5 (2003) 3479–3481;
      (b) A. Tuulmets, V. Pällin, J. Tammiku-Taul, et al., J. Phys. Org. Chem. 15 (2002) 701–705;
      (c) T. Harada, T. Fujiwara, K. Iwazaki, et al., Org. Lett. 2 (2000) 1855–1857.

    4. [4]

      (a) C.F. Zhao, D. Seidel, J. Am. Chem. Soc. 137 (2015) 4650–4653;
      (b) P. Li, S. Regati, H.C. Huang, et al., Chin. Chem. Lett. 26 (2015) 6–10;
      (c) F.S. Zhang, Q. Lai, X.D. Shi, et al., Chin. Chem. Lett. 30 (2019) 392–394.

    5. [5]

      (a) C. Wei, Z. Li, C.J. Li, Org. Lett. 5 (2003) 4473–4475;
      (b) C. Wei, C.J. Li, J. Am. Chem. Soc. 125 (2003) 9584–9585;
      (c) Y.C. Zhang, P.H. Li, M. Wang, et al., J. Org. Chem. 74 (2009) 4364–4367;
      (d) W.W. Chen, H.P. Bi, C.J. Li, Synlett 3 (2010) 475–479;
      (e) P.H. Li, Y.C. Zhang, L. Wang, Chem. Eur. J. 15 (2009) 2045–2049;
      (f) S.N. Afraj, C.P. Chen, G.H. Lee, RSC Adv. 4 (2014) 26301–26308;
      (g) M. Gholinejad, F. Hamed, C. Nájera, Synlett 27 (2016) 1193–1201;
      (h) M. Mirabedini, E. Motamedi, M.Z. Kassaee, Chin. Chem. Lett. 26 (2015) 1085–1090;
      (i) R.N. Yi, Z.J. Wang, Z.W. Liang, et al., App. Organomet. Chem. 33 (2019) e4917;
      (j) D.P. Shi, Z.Y. Duan, Chin. J. Org. Chem. 40 (2020) 1316–1322.

    6. [6]

      (a) X.P. Liu, X.X. Yin, Q.Q. Liu, et al., ChemistrySelect 2 (2017) 10215–10220;
      (b) Y.A. Zou, F.L. Zhu, Z.C. Duan, et al., Tetrahedron Lett. 55 (2014), 2033–2036.

    7. [7]

      (a) Z. Li, C.J. Li, J. Am. Chem. Soc. 126 (2004) 11810–11811;
      (b) S.P. Teong, D. Yu, Y.N. Sum, et al., Green Chem. 18 (2016) 3499–3502;
      (c) C.M. Rao Volla, P. Vogel, Org. Lett. 11 (2009) 1701–1704.

    8. [8]

      (a) Y.B. Zhou, Z.W. Li, X. Yang, et al., Synthesis (Mass) 48 (2016) 231–237;
      (b) C. Tamuly, I. Saikia, M. Hazarik, et al., RSC Adv. 5 (2015) 8604–8608;
      (c) R.H. Qiu, Y.M. Qiu, S.F. Yin, et al., Adv. Synth. Catal. 352 (2010) 153–162;
      (d) S. Wu, H.H. Yu, Q.Z. Hua, et al., Tetrahedron Lett. 58 (2017) 4763–4765;
      (e) C. Niu, A. Tuerxuntayi, G. Li, et al., Chin. Chem. Lett. 28 (2017) 1533–1538.

    9. [9]

      (a) Y. Gu, L. Dai, J.G. Zhang, et al., J. Org. Chem. 86 (2021) 2173–2183;
      (b) X.H. Ouyang, R.J. Song, et al., Angew. Chem. Int. Ed. 55 (2016) 3187–3191;
      (c) A. Tlahuext-Aca, J.F. Hartwig, ACS Catal. 11 (2021) 1119–1127;
      (d) X.H. Meng, M. Yang, J.Y. Peng, et al., Adv. Synth. Catal. 363 (2021) 244–250;
      (e) R.N. Zhao, Z. Zhou, J.X. Liu, et al., Organic Lett. 22 (2020) 8144–8149;
      (f) H.Y. Peng, Y. Zhang, Y. Zhu, J. Org. Chem. 85 (2020) 13290–13297.

    10. [10]

      (a) Z. Cao, Q. Zhu, Y.W. Lin, et al., Chin. Chem. Lett., 30 (2019) 2132–2138;
      (b) Q.W. Gui, F. Teng, S.N. Ying, et al., Chin. Chem. Lett. 31 (2020) 3241–3244;
      (c) Q.W. Gui, X. He, W. Wang, et al., Green Chem. 22 (2020) 118–122;
      (d) Q.W. Gui, F. Teng, Z.C. Li, et al., Org. Chem. Front. 7 (2020) 4026–4030;
      (e) L. Yang, J.P. Wan, Green Chem. 22 (2020) 3074–3078;
      (f) Q. Yu, Y.T. Zhang, J.P. Wan, Green Chem. 21 (2019) 3436–3441.

    11. [11]

      (a) F.S.P. Cardoso, K.A. Abboud, A. Aponick, J. Am. Chem. Soc. 135 (2013) 14548–14551;
      (b) N. Gommermann, C. Koradin, K. Polborn, et al., Angew. Chem. Int. Ed. 42 (2003) 5763–5766.

    12. [12]

      (a) Y.W. Zhao, Q.L. Song, Org. Chem. Front. 3 (2016) 294–297;
      (b) D.M. Lustosa, S. Clemens, M. Rudolph, Adv. Synth. Catal. 361 (2019) 5050–5056;
      (c) N. Sakai, N. Uchida, T. Konakahara, Synlett (2008) 1515–1519;
      (d) R. Shang, L. Liu, Sci. China Chem. 54 (2011) 1670–1687.

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    6. [6]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    7. [7]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    15. [15]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    16. [16]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    17. [17]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    18. [18]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    19. [19]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    20. [20]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

Metrics
  • PDF Downloads(14)
  • Abstract views(464)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return