Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors
* Corresponding authors.
E-mail addresses: yonghu@zjnu.edu.cn (Y. Hu).
Citation: Hongfei Wang, Yijun Zhong, Jiqiang Ning, Yong Hu. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters, ;2021, 32(12): 3733-3752. doi: 10.1016/j.cclet.2021.04.025
L. Yan, Z. Xu, W. Hu, et al., Nano Energy 82 (2021) 105710
doi: 10.1016/j.nanoen.2020.105710
S. Kumar, G. Saeed, L. Zhu, K, et al., Chem. Eng. J. 403 (2021) 126352
doi: 10.1016/j.cej.2020.126352
H. Wang, Y. Yang, Q. Li, et al., Sci. China Mater. 64 (2020) 840–851
H.C. Jin, S. Xin, C.H. Chuang, et al., Science 370 (2020) 192–197
doi: 10.1126/science.aav5842
H.F. Wang, K.F. Zhang, Y.Q. Song, et al., Carbon 146 (2019) 420–429
doi: 10.1016/j.carbon.2019.02.035
J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4 (2014) 1300816
doi: 10.1002/aenm.201300816
D.P. Dubal, N.R. Chodankar, D.H. Kim, P. Gomez-Romero, Chem. Soc. Rev. 47 (2018) 2065–2129
doi: 10.1039/c7cs00505a
P. Kulkarni, S.K. Nataraj, R.G. Balakrishna, D.H. Nagaraju, M.V. Reddy, J. Mater. Chem. A 5 (2017) 22040–22094
doi: 10.1039/C7TA07329A
F. Wang, X. Wu, X. Yuan, et al., Chem. Soc. Rev. 46 (2017) 6816–6854
doi: 10.1039/C7CS00205J
M. Yu, Z. Wang, Y. Han, et al., J. Mater. Chem. A 4 (2016) 4634–4658
doi: 10.1039/C5TA10542K
W. Ye, H. Wang, J. Ning, Y. Zhong, Y. Hu, J. Energy Chem. 57 (2021) 219–232
doi: 10.1016/j.jechem.2020.09.016
X. Ma, D. Gao, ChemSusChem 11 (2018) 1048–1055
doi: 10.1002/cssc.201702457
T.H. Gu, N.H. Kwon, K.G. Lee, X.Y. Jin, S.J. Hwang, Coord. Chem. Rev. 421 (2020) 213439
doi: 10.1016/j.ccr.2020.213439
K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett. 3 (2018) 482–495
doi: 10.1021/acsenergylett.7b01169
Y. Liu, X. Peng, Appl. Mater. Today 8 (2017) 104–115
doi: 10.1016/j.apmt.2017.05.002
G. Yuan, S. Yu, J. Jie, et al., Chin. Chem. Lett. 31 (2020) 1941–1945
doi: 10.1016/j.cclet.2019.12.034
F. Bonaccorso, L. Colombo, G.H. Yu, et al., Science 347 (2015) 1246501
doi: 10.1126/science.1246501
H. Wang, W. Ye, Y. Yang, Y. Zhong, Y. Hu, Nano Energy 85 (2021) 105942
doi: 10.1016/j.nanoen.2021.105942
S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, J. Chem. Sci. 120 (2008) 9–13
doi: 10.1007/s12039-008-0002-7
C. Atzeri, L. Marchio, C.Y. Chow, et al., Chem. Eur. J. 22 (2016) 6482–6486
doi: 10.1002/chem.201600562
M.L. Guan, Q.W. Wang, X. Zhang, et al., Front. Chem. 8 (2020) 390
doi: 10.3389/fchem.2020.00390
S.M. Oh, S.J. Hwang, J. Korean Ceram. Soc. 57 (2020) 119–134
doi: 10.1007/s43207-020-00023-2
B. Raj, A.K. Padhy, S. Basu, M. Mohapatra, J. Electrochem. Soc. 167 (2020) 136501
doi: 10.1149/1945-7111/abb40d
Y. Ibrahim, A. Mohamed, A.M. Abdelgawad, et al., Nanomater. Base l10 (2020) 1916
doi: 10.3390/nano10101916
W.W. Zhao, J.L. Peng, W.K. Wang, et al., Coord. Chem. Rev. 377 (2018) 44–63
doi: 10.1016/j.ccr.2018.08.023
M. Guan, Q. Wang, X. Zhang, et al., Front. Chem. 8 (2020) 390
doi: 10.3389/fchem.2020.00390
L. Lin, W. Lei, S. Zhang, et al., Energy Storage Mater. 19 (2019) 408–423
doi: 10.1016/j.ensm.2019.02.023
S. Yuan, S.Y. Pang, J. Hao, Appl. Phys. Rev. 7 (2020) 021304
doi: 10.1063/5.0005141
B. Xu, H.B. Zhang, H. Mei, D.F. Sun, Coord. Chem. Rev. 420 (2020) 213438
doi: 10.1016/j.ccr.2020.213438
N.L. Wulan Septiani, Y.V. Kaneti, K.B. Fathoni, et al., Nano Energy 67 (2020) 104270
doi: 10.1016/j.nanoen.2019.104270
K. Krishnamoorthy, P. Pazhamalai, S. -. J. Kim, Energy Environ. Sci. 11 (2018) 1595–1602
doi: 10.1039/C8EE00160J
E. Martínez-Periñán, M.P. Down, C. Gibaja, et al., Adv. Energy Mater. 8 (2018) 1702606
doi: 10.1002/aenm.201702606
Y.G. Wang, Y.F. Song, Y.Y. Xia, Chem. Soc. Rev. 45 (2016) 5925–5950
doi: 10.1039/C5CS00580A
M. Winter, R.J. Brodd, Chem. Rev. 104 (2004) 4245–4269
doi: 10.1021/cr020730k
Y.L. Shao, M.F. El-Kady, J.Y. Sun, et al., Chem. Rev. 118 (2018) 9233–9280
doi: 10.1021/acs.chemrev.8b00252
E. Raymundo-Pinero, F. Leroux, F. Beguin, Adv. Mater. 18 (2006) 1877–1882
doi: 10.1002/adma.200501905
X.T. Zhang, Z.Y. Sui, B. Xu, et al., J. Mater. Chem. 21 (2011) 6494–6497
doi: 10.1039/c1jm10239g
R.L. Liu, L. Wan, S.Q. Liu, et al., Adv. Funct. Mater. 25 (2015) 526–533
doi: 10.1002/adfm.201403280
X.Y. Feng, W.F. Chen, L.F. Yan, Nanoscale 7 (2015) 3712–3718
doi: 10.1039/C4NR06897A
Z.X. Zhang, H. Wang, Y.X. Zhang, et al., Chem. Eng. J. 325 (2017) 221–228
doi: 10.1016/j.cej.2017.05.045
Y. Gogotsi, R.M. Penner, ACS Nano 12 (2018) 2081–2083
doi: 10.1021/acsnano.8b01914
C. Costentin, T.R. Porter, J.M. Saveant, ACS Appl. Mater. Interfaces 9 (2017) 8649–8658
doi: 10.1021/acsami.6b14100
T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9 (2010) 146–151
doi: 10.1038/nmat2612
H. Lindstrom, S. Sodergren, A. Solbrand, et al., J. Phys. Chem. B 101 (1997) 7717–7722
doi: 10.1021/jp970490q
B.E. Conway, J. Electrochem. Soc. 138 (1991) 1539–1548
doi: 10.1149/1.2085829
B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66 (1997) 1–14
doi: 10.1016/S0378-7753(96)02474-3
W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Chem. Soc. Rev. 40 (2011) 1697–1721
doi: 10.1039/C0CS00127A
P. Shang, J. Zhang, W. Tang, Q. Xu, S. Guo, Adv. Funct. Mater. 26 (2016) 7766–7774
doi: 10.1002/adfm.201603504
C. Guan, J.L. Liu, Y.D. Wang, et al., ACS Nano 9 (2015) 5198–5207
doi: 10.1021/acsnano.5b00582
D.W. Wang, F. Li, H.M. Cheng, J. Power Sources 185 (2008) 1563–1568
doi: 10.1016/j.jpowsour.2008.08.032
X.X. Pan, X.M. Chen, Y. Li, Z.N. Yu, Electrochim. Acta 182 (2015) 1101–1106
doi: 10.1016/j.electacta.2015.10.035
T. Zhai, L. Wan, S. Sun, et al., Adv. Mater. 29 (2017) 1604167
doi: 10.1002/adma.201604167
Z. Ma, G. Shao, Y. Fan, et al., ACS Appl. Mater. Interfaces 8 (2016) 9050–9058
doi: 10.1021/acsami.5b11300
S.X. Wu, K. San Hui, K.N. Hui, Carbon132 (2018) 776–784
doi: 10.1016/j.carbon.2017.12.051
H.C. Gao, F. Xiao, C.B. Ching, H.W. Duan, ACS Appl. Mater. Interfaces 4 (2012) 2801–2810
doi: 10.1021/am300455d
Z.M. Li, Y.F. An, Z.G. Hu, et al., J. Mater. Chem. A 4 (2016) 10618–10626
doi: 10.1039/C6TA03358J
F. Li, M. Xue, X. Zhang, et al., Adv. Energy Mater. 8 (2018) 1702794
doi: 10.1002/aenm.201702794
F. Jiang, W. Li, R. Zou, et al., Nano Energy 7 (2014) 72–79
doi: 10.1016/j.nanoen.2014.04.007
H. Zhang, C. Lu, C. Chen, et al., ChemElectroChem 4 (2017) 1990–1996
doi: 10.1002/celc.201700253
T. Ling, P.F. Da, X.L. Zheng, et al., Sci. Adv. 4 (2018) eaau6261
doi: 10.1126/sciadv.aau6261
P. Gao, P. Metz, T. Hey, et al., Nat. Commun. 8 (2017) 14559
doi: 10.1038/ncomms14559
N. Jabeen, A. Hussain, Q. Xia, et al., Adv. Mater. 29 (2017) 1700804
doi: 10.1002/adma.201700804
S. Zhu, L. Li, J. Liu, et al., ACS Nano 12 (2018) 1033–1042
doi: 10.1021/acsnano.7b03431
Z.M. Hu, X. Xiao, H.Y. Jin, et al., Nat. Commun. 8 (2017) 15630
doi: 10.1038/ncomms15630
I. Hussain, T. Hussain, C. Lamiel, K.L. Zhang, J. Power Sources 480 (2020) 228873
doi: 10.1016/j.jpowsour.2020.228873
X. Zhao, L. Mao, Q.H. Cheng, et al., Chem. Eng. J. 387 (2020) 124081
doi: 10.1016/j.cej.2020.124081
Y. Li, Y. Shan, H. Pang, Chin. Chem. Lett. 31 (2020) 2280–2286
doi: 10.1016/j.cclet.2020.03.027
X. Zhang, F. Yang, H. Chen, et al., Small 16 (2020) e2004188
doi: 10.1002/smll.202004188
C.L. Xiao, X.Y. Zhang, D.R. MacFarlane, Electrochim. Acta 280 (2018) 55–61
doi: 10.1016/j.electacta.2018.05.112
Y.S. Zhou, L. Chen, Y.T. Jiao, Z.L. Li, Y.M. Gao, Electrochim. Acta 299 (2019) 388–394
doi: 10.1016/j.electacta.2018.12.186
K.Z. Li, B.C. Zhao, J. Bai, et al., Small 16 (2020) 2001974
doi: 10.1002/smll.202001974
Y.Q. Zhu, C.B. Cao, S. Tao, et al., Sci. Rep. 4 (2014) 5787
doi: 10.1038/srep05787
X.W. Hu, S. Liu, C.H. Li. et al., Nanoscale 8 (2016) 11797–11802
doi: 10.1039/C6NR02912D
S. Gao, Y.F. Sun, F.C. Lei, et al., Angew. Chem. Int. Ed. 53 (2014) 12789–12793
doi: 10.1002/anie.201407836
L.X. Zheng, L.T. Guan, J.L. Song, H.J. Zheng, Appl. Surf. Sci. 480 (2019) 727–737
doi: 10.1016/j.apsusc.2019.02.243
Z. Ling, A. Harvey, D. McAteer, et al., Adv. Energy Mater. 8 (2018) 1702364
doi: 10.1002/aenm.201702364
B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, Chem. Eng. J. 355 (2019) 881–890
doi: 10.1016/j.cej.2018.08.185
Y.D. Zhang, B.P. Lin, Y. Sun, et al., Electrochim. Acta 188 (2016) 490–498
doi: 10.2175/193864716821122865
J.L. Gunjakar, A.I. Inamdar, B. Hou, et al., Nanoscale 10 (2018) 8953–8961
doi: 10.1039/C7NR09626G
D. Kumar, A.K. Tomar, G. Singh, R.K. Sharma, Electrochim. Acta 363 (2020) 137238
doi: 10.1016/j.electacta.2020.137238
D.W. Shi, L.Y. Zhang, N.D. Zhang, et al., Nanoscale 10 (2018) 10554–10563
doi: 10.1039/C8NR01186A
G.C. Liu, X.Z. Song, S.P. Zhang, et al., J. Power Sources 465 (2020) 228239
doi: 10.1016/j.jpowsour.2020.228239
S.J. Patil, N.R. Chodankar, R.B. Pujari, Y.K. Han, D.W. Lee, J. Power Sources 466 (2020) 228286
doi: 10.1016/j.jpowsour.2020.228286
L. Wan, D.Q. Chen, J.X. Liu, et al., J. Power Sources 465 (2020) 228293
doi: 10.1016/j.jpowsour.2020.228293
X. Ge, C.D. Gu, Z.Y. Yin, et al., Nano Energy 20 (2016) 185–193
doi: 10.1016/j.nanoen.2015.12.020
X.Y. Li, L. Yu, G.L. Wang, et al., Electrochim. Acta 255 (2017) 15–22
doi: 10.1016/j.electacta.2017.09.155
D. Du, X. Wu, S. Li, et al., J. Mater. Chem. A5 (2017) 8964–8971
doi: 10.1039/C7TA00624A
Y.H. Kim, X.Y. Jin, S.J. Hwang, J. Mater. Chem. A7 (2019) 10971–10979
doi: 10.1039/c9ta01532a
Z. Pan, Y. Jiang, P. Yang, et al., ACS Nano 12 (2018) 2968–2979
doi: 10.1021/acsnano.8b00653
A. Elgendy, N.M. El Basiony, F. El-Taib Heakal, A.E. Elkholy, J. Power Sources 466 (2020) 228294
doi: 10.1016/j.jpowsour.2020.228294
J. Theerthagiri, K. Karuppasamy, G. Durai, et al., Nanomater. Base l8 (2018) 256
doi: 10.3390/nano8040256
W. Lu, Y. Yang, T. Zhang, et al., J. Colloid Interface Sci. 590 (2021) 226–237
doi: 10.1016/j.jcis.2021.01.050
T. Deepalakshmi, T.T. Nguyen, N.H. Kim, K.T. Chong, J.H. Lee, J. Mater. Chem. A7 (2019) 24462–24476
doi: 10.1039/c9ta08677c
J. Zhou, M. Guo, L.L. Wang, et al., Chem. Eng. J. 366 (2019) 163–171
doi: 10.1016/j.cej.2019.02.079
H. Jeon, J.M. Jeong, H.G. Kang, et al., Adv. Energy Mater. 8 (2018) 1800227
doi: 10.1002/aenm.201800227
K.J. Huang, J.Z. Zhang, G.W. Shi, Y.M. Liu, Electrochim. Acta 132 (2014) 397–403
doi: 10.1016/j.electacta.2014.04.007
X. Geng, Y. Zhang, Y. Han, et al., Nano Lett. 17 (2017) 1825–1832
doi: 10.1021/acs.nanolett.6b05134
Z.L. Guo, L. Yang, W. Wang, L.X. Cao, B.H. Dong, J. Mater. Chem. A6 (2018) 14681–14688
doi: 10.1039/C8TA03812K
N. Feng, R.J. Meng, L.H. Zu, et al., Nat. Commun. 10 (2019) 1372
doi: 10.1038/s41467-019-09384-7
N.R. Chodankar, S.J. Patil, G.S.R. Raju, et al., ChemSusChem 13 (2020) 1582–1592
doi: 10.1002/cssc.201902339
X. Wang, H. Li, H. Li, et al., Adv. Funct. Mater. 30 (2020) 1910302
D. Ghosh, C.K. Das, ACS Appl. Mater. Interfaces 7 (2015) 1122–1131
doi: 10.1021/am506738y
N. Choudhary, C. Li, H.S. Chung, et al., ACS Nano 10 (2016) 10726–10735
doi: 10.1021/acsnano.6b06111
S.G. Mohamed, I. Hussain, J.J. Shim, Nanoscale 10 (2018) 6620–6628
doi: 10.1039/C7NR07338K
L. Mei, T. Yang, C. Xu, et al., Nano Energy 3 (2014) 36–45
doi: 10.1016/j.nanoen.2013.10.004
J. Wu, X. Shi, W. Song, et al., Nano Energy 45 (2018) 439–447
doi: 10.1016/j.nanoen.2018.01.024
L.F. Shen, J. Wang, G.Y. Xu, et al., Adv. Energy Mater. 5 (2015) 1400977
doi: 10.1002/aenm.201400977
T. Chen, Y.F. Tang, W.F. Guo, et al., Electrochim. Acta 212 (2016) 294–302
doi: 10.1016/j.electacta.2016.07.023
X. Yang, H. Sun, P. Zan, L. Zhao, J. Lian, J. Mater. Chem. A 4 (2016) 18857–18867
doi: 10.1039/C6TA07898B
Z.P. Li, D. Zhao, C.Y. Xu, et al., Electrochim. Acta 278 (2018) 33–41
doi: 10.1016/j.electacta.2018.05.030
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253
doi: 10.1002/adma.201102306
P. Dutta, A. Sikdar, A. Majumdar, et al., Carbon 169 (2020) 225–234
doi: 10.1016/j.carbon.2020.07.041
Z.R. Zhang, Z.P. Yao, X. Zhang, Z.H. Jiang, Electrochim. Acta 359 (2020) 136960
doi: 10.1016/j.electacta.2020.136960
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78-U171
doi: 10.1038/nature13970
J. Tang, T. Mathis, X.W. Zhong, et al., Adv. Energy Mater. (2020) 2003025
J. Orangi, F. Hamade, V.A. Davis, M. Beidaghi, ACS Nano 14 (2020) 640–650
doi: 10.1021/acsnano.9b07325
Y. Tian, W. Que, Y. Luo, et al., J. Mater. Chem. A 7 (2019) 5416–5425
doi: 10.1039/c9ta00076c
Y. Wen, T.E. Rufford, X. Chen, et al., Nano Energy 38 (2017) 368–376
doi: 10.1016/j.nanoen.2017.06.009
Y. Yoon, M. Lee, S.K. Kim, et al., Adv. Energy Mater. 8 (2018) 1703173
doi: 10.1002/aenm.201703173
X. Feng, J. Ning, B. Wang, et al., Nano Energy 72 (2020) 104741
doi: 10.1016/j.nanoen.2020.104741
A.V. Mohammadi, M. Mojtabavi, N.M. Caffrey, M. Wanunu, M. Beidaghi, Adv. Mater. 31 (2019) 1806931
doi: 10.1002/adma.201806931
D. Pinto, B. Anasori, H. Avireddy, et al., J. Mater. Chem. A8 (2020) 8957–8968
doi: 10.1039/d0ta01798a
X.M. Wu, B. Huang, R.Y. Lv, Q.G. Wang, Y. Wang, Chem. Eng. J. 378 (2019) 122246
doi: 10.1016/j.cej.2019.122246
X. Jian, M. He, L. Chen, et al., Electrochim. Acta 318 (2019) 820–827
doi: 10.1016/j.electacta.2019.06.045
M. Boota, M. Pasini, F. Galeotti, et al., Chem. Mater. 29 (2017) 2731–2738
doi: 10.1021/acs.chemmater.6b03933
Y.N. Wang, J.W. Sun, X.Y. Qian, et al., J. Power Sources 414 (2019) 540–546
doi: 10.3390/mi10080540
K.L. Wang, B.C. Zheng, M. Mackinder, et al., Energy Storage Mater. 20 (2019) 299–306
doi: 10.1016/j.ensm.2019.04.029
Y. Luo, C. Yang, Y. Tian, et al., J. Power Sources 450 (2020) 227694
doi: 10.1016/j.jpowsour.2019.227694
O. Yaghi, Acta Crystallogr. A 58 (2002) C42
Z.X. Li, B.L. Yang, L.J. Kong, M.L. Yue, H.H. Duan, Carbon 144 (2019) 540–548
doi: 10.1016/j.carbon.2018.12.061
Q. Xu, H. Pang, H. Xue, Q. Li, S. Zheng, Nat. Sci. Rev. 7 (2020) 305–314
doi: 10.1093/nsr/nwz137
D. Sheberla, J.C. Bachman, J.S. Elias, et al., Nat. Mater. 16 (2017) 220–224
doi: 10.1038/nmat4766
D.K. Nguyen, I.M. Schepisi, F.Z. Amir, Chem. Eng. J. 378 (2019) 122150
doi: 10.1016/j.cej.2019.122150
D.W. Feng, T. Lei, M.R. Lukatskaya, et al., Nat. Energy 3 (2018) 30–36
doi: 10.1038/s41560-017-0044-5
S.C. Wechsler, F.Z. Amir, ChemSusChem 13 (2020) 1491–1495
doi: 10.1002/cssc.201902691
Y. Zheng, S.S. Zheng, Y.X. Xu, et al., Chem. Eng. J. 373 (2019) 1319–1328
doi: 10.1016/j.cej.2019.05.145
H. Yao, F. Zhang, G.W. Zhang, et al., Chem. Eng. J. 334 (2018) 2547–2557
doi: 10.1016/j.cej.2017.12.013
M.C. Wang, H.H. Shi, P.P. Zhang, et al., Adv. Funct. Mater. 30 (2020) 2002664
doi: 10.1002/adfm.202002664
W.S. Bai, S.J. Li, J.P. Ma, W. Cao, J.B. Zheng, J. Mater. Chem. A 7 (2019) 9086–9098
doi: 10.1039/c9ta00311h
R.S. Gao, J. Tang, X.L. Yu, et al., Adv. Funct. Mater. 30 (2020) 2002200
doi: 10.1002/adfm.202002200
Q.Y. Dou, S.L. Lei, D.W. Wang, et al., Energy Environ. Sci. 11 (2018) 3212–3219
doi: 10.1039/c8ee01040d
H. Wang, Y. Deng, J. Qiu, et al., ChemSusChem 14 (2021) 632–641
doi: 10.1002/cssc.202002236
C.Y. Yang, J. Chen, X. Ji, et al., Nature 569 (2019) 245–250
doi: 10.1038/s41586-019-1175-6
W. Lu, J.L. Shen, P. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 15441–15447
doi: 10.1002/anie.201907516
H.W. Wang, Z.J. Xu, H. Yi, et al., Nano Energy 7 (2014) 86–96
doi: 10.1016/j.nanoen.2014.04.009
P.H. Yang, Y. Ding, Z.Y. Lin, et al., Nano Lett. 14 (2014) 731–736
doi: 10.1021/nl404008e
I. Khan, N. Baig, S. Ali, et al., Energy Storage Mater. 35 (2021) 443–469
doi: 10.1016/j.ensm.2020.11.033
H. Li, T. Lv, N. Li, et al., Nanoscale 9 (2017) 18474–18481
doi: 10.1039/C7NR07424G
J.F. Zang, C.Y. Cao, Y.Y. Feng, J. Liu, X.H. Zhao, Sci. Rep. 4 (2014) 6492
Y.X. Xu, Z.Y. Lin, X.Q. Huang, et al., Adv. Mater. 25 (2013) 5779–5784
doi: 10.1002/adma.201301928
B. Xu, H. Wang, Q. Zhu, et al., Energy Storage Mater. 12 (2018) 128–136
doi: 10.1016/j.ensm.2017.12.006
V. Shutthanandan, M. Nandasiri, J.M. Zheng, et al., J. Electron. Spectrosc. 231 (2019) 2–10
doi: 10.1016/j.elspec.2018.05.005
J. Nelson, S. Misra, Y. Yang, et al., J. Am. Chem. Soc. 134 (2012) 6337–6343
doi: 10.1021/ja2121926
T. Bartsch, A.Y. Kim, F. Strauss, et al., Chem. Commun. 55 (2019) 11223–11226
doi: 10.1039/c9cc04453a
X.Q. Yu, Y.C. Lyu, L. Gu, et al., Adv. Energy Mater. 4 (2014) 1300950
doi: 10.1002/aenm.201300950
M.S. Javed, N. Shaheen, S. Hussain, et al., J. Mater. Chem. A 7 (2019) 946–957
doi: 10.1039/c8ta08816k
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Zhenqiang Guo , Huicong Yang , Qian Wei , Shengjun Xu , Guangjian Hu , Shuo Bai , Feng Li . Dual-additives enable stable electrode-electrolyte interfaces for long life Li-SPAN batteries. Chinese Chemical Letters, 2024, 35(5): 108622-. doi: 10.1016/j.cclet.2023.108622
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Min LUO , Xiaonan WANG , Yaqin ZHANG , Tian PANG , Fuzhi LI , Pu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Ting Shi , Ziyang Song , Yaokang Lv , Dazhang Zhu , Ling Miao , Lihua Gan , Mingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559
Zhe Wang , Li-Peng Hou , Qian-Kui Zhang , Nan Yao , Aibing Chen , Jia-Qi Huang , Xue-Qiang Zhang . High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chinese Chemical Letters, 2024, 35(4): 108570-. doi: 10.1016/j.cclet.2023.108570
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Mei-Chen Liu , Qing-Song Liu , Yi-Zhou Quan , Jia-Ling Yu , Gang Wu , Xiu-Li Wang , Yu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Lingjiang Kou , Yong Wang , Jiajia Song , Taotao Ai , Wenhu Li , Mohammad Yeganeh Ghotbi , Panya Wattanapaphawong , Koji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368
Yunfa Dong , Shijie Zhong , Yuhui He , Zhezhi Liu , Shengyu Zhou , Qun Li , Yashuai Pang , Haodong Xie , Yuanpeng Ji , Yuanpeng Liu , Jiecai Han , Weidong He . Modification strategies for non-aqueous, highly proton-conductive benzimidazole-based high-temperature proton exchange membranes. Chinese Chemical Letters, 2024, 35(4): 109261-. doi: 10.1016/j.cclet.2023.109261
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Hai-Yang Song , Jun Jiang , Yu-Hang Song , Min-Hang Zhou , Chao Wu , Xiang Chen , Wei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556