A comparative study on the reactivity of cationic niobium clusters with nitrogen and oxygen
-
* Corresponding author.
E-mail address: zxluo@iccas.ac.cn (Z. Luo).
Citation:
Benben Huang, Mengzhou Yang, Xin Lei, Wen Gan, Zhixun Luo. A comparative study on the reactivity of cationic niobium clusters with nitrogen and oxygen[J]. Chinese Chemical Letters,
;2022, 33(2): 1058-1064.
doi:
10.1016/j.cclet.2021.04.020
M. Schmidt, A. Masson, H.P. Cheng, C. Bréchignac, ChemPhysChem 16 (2015) 855-865.
doi: 10.1002/cphc.201402726
M.B. Knickelbein, Annu. Rev. Phys. Chem. 50 (1999) 79-115.
doi: 10.1146/annurev.physchem.50.1.79
S.K. Loh, L. Lian, P.B. Armentrout, J. Am. Chem. Soc. 111 (1989) 3167-3176.
doi: 10.1021/ja00191a010
M.B. Knickelbein, S. Yang, J. Chem. Phys. 93 (1990) 5760-5767.
doi: 10.1063/1.459570
W.J.C. Menezes, M.B. Knickelbein, J. Chem. Phys. 98 (1993) 1856-1866.
doi: 10.1063/1.464220
V. Kumar, Y. Kawazoe, Phys. Rev. B 65 (2002) 125403.
doi: 10.1103/PhysRevB.65.125403
W. Fa, C. Luo, J. Dong, Phys. Rev. B 71 (2005) 245415.
doi: 10.1103/PhysRevB.71.245415
P.V. Nhat, V.T. Ngan, M.T. Nguyen, J. Phys. Chem. C 114 (2010) 13210-13218.
doi: 10.1021/jp103484k
N.P. Vu, N.V. Thi, T.T. Ba, N.M. Tho, J. Phys. Chem. A 115 (2011) 3523-3535.
doi: 10.1021/jp110758p
C. Berkdemir, S. -B. Cheng, A.W. Castleman, Int. J. Mass. Spectrom. 365-366 (2014) 222-224.
doi: 10.1016/j.ijms.2014.03.011
C.Q. Jiao, B.S. Freiser, J. Phys. Chem. 99 (1995) 10723-10730.
doi: 10.1021/j100027a008
J.L. Elkind, F.D. Weiss, J.M. Alford, R.T. Laaksonen, R.E. Smalley, J. Chem. Phys. 88 (1988) 5215-5224.
doi: 10.1063/1.454596
M.E. Geusic, M.D. Morse, R.E. Smalley, J. Chem. Phys. 82 (1985) 590-591.
doi: 10.1063/1.448732
A.B. Vakhtin, K. Sugawara, Chem. Phys. Lett. 299 (1999) 553-560.
doi: 10.1016/S0009-2614(98)01320-7
A.B. Vakhtin, K. Sugawara, J. Chem. Phys. 115 (2001) 3629-3639.
doi: 10.1063/1.1389302
S.K. Loh, L. Lian, P.B. Armentrout, J. Chem. Phys. 91 (1989) 6148-6163.
doi: 10.1063/1.457434
P.P. Radi, G. von Helden, M.T. Hsu, P.R. Kemper, M.T. Bowers, Int. J. Mass. Spec trom. 109 (1991) 49-73.
doi: 10.1016/0168-1176(91)85096-5
M.D. Morse, M.E. Geusic, J.R. Heath, R.E. Smalley, J. Chem. Phys. 83 (1985) 2293-2304.
doi: 10.1063/1.449321
A. Bérces, P.A. Hackett, L. Lian, S.A. Mitchell, D.M. Rayner, J. Chem. Phys. 108 (1998) 5476-5490.
doi: 10.1063/1.475936
L. Song, A. Eychmueller, R.J. St. Pierre, M.A. El-Sayed, J. Chem. Phys. 93 (1989) 2485-2490.
doi: 10.1021/j100343a050
L. Holmgren, M. Andersson, A. Rosén, Surf. Sci. 331-333 (1995) 231-236.
doi: 10.1016/0039-6028(95)00099-2
H. Gronbeck, A. Rosen, Phys. Rev. B 54 (1996) 1549-1552.
doi: 10.1103/PhysRevB.54.1549
Q.F. Wu, S.H. Yang, Int. J. Mass. Spectrom. 184 (1999) 57-65.
doi: 10.1016/S1387-3806(98)14252-5
D.J. Harding, T.A. Oliver, T.R. Walsh, et al., Eur. J. Mass. Spectrom. 15 (2009) 83-90.
doi: 10.1255/ejms.945
L. Song, M.A. Elsayed, J. Chem. Phys. 94 (1990) 7907-7913.
doi: 10.1021/j100383a031
C. Berg, T. Schindler, G. Niedner-Schatteburg, V.E. Bondybey, J. Chem. Phys. 102 (1995) 4870-4884.
doi: 10.1063/1.469535
J.M. Parnis, E. Escobar-Cabrera, M.G. Thompson, et al., J. Phys. Chem. A 109 (2005) 7046-7056.
doi: 10.1021/jp0506944
S.R. Miller, T.P. Marcy, E.L. Millam, D.G. Leopold, J. Am. Chem. Soc. 129 (2007) 3482-3483.
doi: 10.1021/ja068568g
B. Pfeffer, S. Jaberg, G. Niedner-Schatteburg, J. Chem. Phys. 131 (2009) 194305.
doi: 10.1063/1.3264575
X. Tang, Y. Hou, C.Y. Ng, B. Ruscic, J. Chem. Phys. 123 (2005) 074330.
doi: 10.1063/1.1995699
M.R. Zakin, R.O. Brickman, J. Chem. Phys. 127 (1988) 3555-3560.
J. Mwakapumba, K.M. Ervin, Int. J. Mass Spectrom. Ion Processes 161 (1997) 161-174.
doi: 10.1016/S0168-1176(96)04469-2
E.D. Pillai, T.D. Jaeger, M.A. Duncan, J. Am. Chem. Soc. 129 (2007) 2297-2307.
doi: 10.1021/ja0661008
M.A. Addicoat, K.F. Lim, G.F. Metha, J. Chem. Phys. 137 (2012) 034301.
doi: 10.1063/1.4733287
Z. Luo, W.H. Woodward, J.C. Smith, A.W. Castleman Jr., Int. J. Mass. Spectrom. 309 (2012) 176-181.
doi: 10.1016/j.ijms.2011.09.016
J.P. Perdew, Phys. Rev. B 34 (1986) 7406.
doi: 10.1103/PhysRevB.33.8822
C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
doi: 10.1103/PhysRevB.37.785
T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580-592.
doi: 10.1002/jcc.22885
W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics Modell. 14 (1996) 33-38.
doi: 10.1016/0263-7855(96)00018-5
E.J. Baerends, T. Ziegler, J. Autschbach, et al., ADF2018, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com.
G.G. te Velde, F.M. Bickelhaupt, E.J. Baerends, et al., J. Comput. Chem. 22 (2001) 931-967.
doi: 10.1002/jcc.1056
H. Zhang, H. Wu, Y. Jia, et al., Rev. Sci. Instrum. 90 (2019) 073101.
doi: 10.1063/1.5108994
K.A. Zemski, D.R. Justes, A.W. Castleman, J. Phys. Chem. B 106 (2002) 6136-6148.
doi: 10.1021/jp0142334
J.R. Sambrano, L. Gracia, J. Andrés, S. Berski, A. Beltrán, J. Phys. Chem. A 108 (2004) 10850-10860.
doi: 10.1021/jp047229b
J.E. Bower, J. Chem. Phys. 85 (1986) 5373-5375.
doi: 10.1063/1.451157
R.E. Leuchtner, A.C. Harms, A.W. Castleman Jr., J. Chem. Phys. 91 (1989) 2753-2754.
doi: 10.1063/1.456988
E. Kapiloff, K.M. Ervin, J. Phys. Chem. A 101 (1997) 8460-8469.
Z. Luo, G.U. Gamboa, J.C. Smith, et al., J. Am. Chem. Soc. 134 (2012) 18973-18978.
doi: 10.1021/ja303268w
R. Burgert, H. Schnöckel, A. Grubisic, X. Li, S.T. Stokes, Science 319 (2008) 438-442.
doi: 10.1126/science.1148643
C. Geng, J. Li, T. Weiske, H. Schwarz, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) 11680-11687.
doi: 10.1073/pnas.1814610115
N. Chen, R.T. Yang, Ind. Eng. Chem. Res. 35 (1996) 4020-4027.
doi: 10.1021/ie960299n
M.P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory. Comput. 5 (2009) 962-975.
doi: 10.1021/ct800503d
T. Ziegler, A. Rauk, Theor. Chim. Acta 46 (1977) 1-10.
doi: 10.1007/BF02401406
F.M. Bickelhaupt, E.J. Baerends, Rev. Comput. Chem. 15 (2000) 1-86.
M.V. Hopffgarten, G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2 (2012) 43-62.
doi: 10.1002/wcms.71
J. Chen, H. Zhang, X. Liu, et al., Phys. Chem. Chem. Phys. 18 (2016) 7190-7196.
doi: 10.1039/C5CP06892D
J. Chen, Z. Luo, J. Yao, Phys. Chem. Chem. Phys. 19 (2017) 21777-21782.
doi: 10.1039/C7CP02538F
Z. Luo, S. Khanna, Springer Nature Singapore Pte Ltd., Springer, 2020, p. 267.
A.C. Reber, S.N. Khanna, P.J. Roach, W.H. Woodward, A.W. Castleman, J. Am. Chem. Soc. 129 (2007) 16098-16101.
doi: 10.1021/ja075998d
Jiayao Li , Xinru Peng , Shiwei Yin , Changwei Wang , Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
Shuanglin TIAN , Tinghong GAO , Yutao LIU , Qian CHEN , Quan XIE , Qingquan XIAO , Yongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Jian Ji , Jie Yan , Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360