Citation: Zhihua Wang, Li Wei, Zhendong Cheng, Jianhui Xia, Zhiyuan Chen. Pd-catalyzed halocyclizations of unactivated 1, 6-diynes through a formal anti-carbopalladation/bromide radical cascade[J]. Chinese Chemical Letters, ;2021, 32(9): 2756-2760. doi: 10.1016/j.cclet.2021.03.030 shu

Pd-catalyzed halocyclizations of unactivated 1, 6-diynes through a formal anti-carbopalladation/bromide radical cascade

    * Corresponding authors.
    E-mail addresses: xjh2168@126.com (J. Xia), zchen@jxnu.edu.cn, 27542458@qq.com (Z. Chen).
  • Received Date: 21 January 2021
    Revised Date: 3 March 2021
    Accepted Date: 12 March 2021
    Available Online: 15 March 2021

Figures(9)

  • We report a Pd-catalyzed halocyclization of unactivated 1, 6-diynes with N-bromosuccinimide (NBS). This approach produces stereo-defined dibromo substituted dihydropyrans, tetrahydropyridines, and 3-methylene cyclohexenes with exocyclic double bond appendages in mostly good yields. Copper salt was found to be a useful Lewis acid in this reaction. Mechanistically, a formal anti-carbopalladation and a bromide radical promoted PdII-PdIII-PdI-PdII catalytic cycles were proposed to be involved in the formation of the dibromo-substituted products. Further functionalization of the dihydropyran derivatives underwent B(C6F5)3-catalyzed ring opening, and reduction afforded dibrominated 1, 3-dienes with excellent stereoselectivity.
  • 加载中
    1. [1]

      (a) I.G. Stara, I. Stary, Acc. Chem. Res. 53 (2020) 144-158;
      (b) L. Chung, C. Wong, Chem. Eur. 25 (2019) 2889-2897;
      (c) Y. Hu, M. Bai, Y. Yang, Q. Zhou, Org. Chem. Front. 4 (2017) 2256-2275;
      (d) C. Shu, L. Li, T. Tan, D. Yuan, L. Ye, Sci. Bull. 62 (2017) 352-357;
      (e) T. Müller, Metal Catalyzed Cascade Reactions, Vol. 19, Springer, Berlin/Heidelberg, 2006, pp. 149-205.

    2. [2]

      (a) D. Rodríguez, M. Martínez-Esperón, A. Navarro-Vázquez, et al., J. Org. Chem. 69 (2004) 3842-3848;
      (b) R.C. Burell, K.J. Daoust, A.Z. Bradley, K.J. Dirico, P.R. Johnson, J. Am. Chem. Soc. 118 (1996) 4218-4219;
      (c) D. Rodríguez, A. Navarro, L. Castedo, D. Domínguez, C. Saá, Org. Lett. 2 (2000) 1497-1500;
      (d) A.G. Myers, E.Y. Kuo, N.S. Finney, J. Am. Chem. Soc. 111 (1989) 8057-8059.

    3. [3]

      (a) M. Huang, C. Zhu, C. He, et al., Org. Chem. Front. 5 (2018) 1643-1650;
      (b) M. Huang, Y. Zhu, W. Hao, et al., Adv. Synth. Catal. 359 (2017) 2229-2234.

    4. [4]

      S. Saito, Y. Yamamoto, Chem. Rev. 100 (2000) 2901-2915.  doi: 10.1021/cr990281x

    5. [5]

      (a) J. Zhao, C.O. Hughes, F.D. Toste, J. Am. Chem. Soc. 128 (2006) 7436-7437;
      (b) C. Oh, A. Kim, W. Park, D. Park, N. Kim, Synlett 17 (2006) 2781-2784.

    6. [6]

      (a) Y. Chen, M. Chen, Y. Liu, Angew. Chem. Int. Ed. 51 (2012) 6493-6497;
      (b) Q. Xiao, H. Zhu, G. Li, Z. Chen, Adv. Synth. Catal. 356 (2014) 3809-3815;
      (c) B.M. Trost, T. Michael, T. Rudd, J. Am. Chem. Soc. 127 (2005) 4763-4776.

    7. [7]

      (a) J. Zhang, H. Wang, S. Ren, W. Zhang, Y. Liu, Org. Lett. 17 (2005) 2920-2923;
      (b) W. Hui, Y. Zhou, Y. Dong, et al., Green Energy Environ. 4 (2019) 53-59;
      (c) J. Zhang, H. Zhang, D. Shi, H. Jin, Y. Liu, Eur. J. Org. Chem. 33 (2016) 5545-5558.

    8. [8]

      (a) D. Leboeuf, A. Simonneau, C. Aubert, et al., Angew. Chem. Int. Ed. 50 (2011) 6868-6871;
      (b) J. Lian, P. Chen, Y. Lin, H. Ting, R.S. Liu, J. Am. Chem. Soc. 128 (2006) 11372-11373.

    9. [9]

      Y. Li, K.J. Jardine, R. Tan, D. Song, V.M. Dong, Angew. Chem. Int. Ed. 48 (2009) 9690-9692.  doi: 10.1002/anie.200905478

    10. [10]

      (a) Z. Chen, M. Zeng, J. Yuan, Q. Yang, Y. Peng, Org. Lett. 14 (2012) 3588-3591;
      (b) Z. Chen, X. Jia, C. Ye, G. Qiu, J. Wu, Chem. Asian J. 9 (2014) 126-130;
      (c) J. Tan, Z. Wang, J. Yuan, Y. Peng, Z. Chen, Adv. Synth. Catal. 361 (2019) 1295-1300;
      (d) H. Zhu, Z. Chen, Org. Lett. 18 (2016) 488-491;
      (e) Z. Chen, X. Jia, J. Huang, J. Yuan, J. Org. Chem. 79 (2014) 10674-10681.

    11. [11]

      K. Strom, A. Impastato, K. Moy, A. Landreth, J. Snyder, Org. Lett. 17 (2015) 2126-2129.

    12. [12]

      (a) K. Albert, G. Schlotterbeck, U. Braumann, et al., Angew. Chem. Int. Ed. 34 (1995) 1014-1016;
      (b) B. Vaz, R. Alvarez, A.R. de Lera, J. Org. Chem. 67 (2002) 5040-5043.

    13. [13]

      (a) J. Li, Y. Liang, Y. Xie, J. Org. Chem. 69 (2004) 8125-8127;
      (b) Y. Wen, L. Huang, H. Jiang, H. Chen, J. Org. Chem. 77 (2012) 2029-2034.

    14. [14]

      S. Sarez-Pantiga, D. Palomas, E. Rubio, J. Gonzalez, Angew. Chem. Int. Ed. 48 (2009) 7857-7861.  doi: 10.1002/anie.200902989

    15. [15]

      (a) G. Zhu, Z. Zhang, J. Org. Chem. 70 (2005) 3339-3341;
      (b) H. Jiang, C. Qiao, W. Liu, Chem. Eur. J. 16 (2010) 10968-10970;
      (c) S. Tang, Q. Yu, P. Peng, et al., Org. Lett. 9 (2007) 3413-3416;
      (d) D. Chen, X. Chen, Z. Lu, et al., Adv. Synth. Catal. 353 (2011) 1474-1478;
      (e) J. Li, S. Tang, Y. Xie, J. Org. Chem. 70 (2005) 477-479.

    16. [16]

      (a) L. Bai, Y. Yuan, J. Liu, et al., Angew. Chem. Int. Ed. 55 (2016) 6946-6950;
      (b) H. Yoon, M. Rçlz, F. Landau, M. Lautens, Angew. Chem. Int. Ed. 56 (2017) 10920-10923;
      (c) J. Wallbaum, R. Neufeld, D. Stalke, D.B. Werz, Angew. Chem. Int. Ed. 52 (2013) 13243-13246;
      (d) B. Monks, S. Cook, J. Am. Chem. Soc. 134 (2012) 15297-15300;
      (e) S. Blouin, R. Pertschi, A. Schoenfelder, J. Suffert, G. Blond, Adv. Synth. Catal. 360 (2018) 2166-2171;
      (f) S. Blouin, V. Gandon, G. Blond, J. Suffert, Angew. Chem. Int. Ed. 55 (2016) 7208-7211;
      (g) J. Petrignet, A. Boudhar, G. Blond, J. Suffert, Angew. Chem. Int. Ed. 50 (2011) 3285-3289.

    17. [17]

      (a) A. Reding, P. Jones, D.B. Werz, Angew. Chem. Int. Ed. 57 (2018) 10610-10614;
      (b) M. Pawliczek, T. Schneider, C. Maass, D. Stalke, D.B. Werz, Angew. Chem. Int. Ed. 54 (2015) 4119-4123;
      (c) T. Sperger, C. Le, M. Lautens, F. Schoenebeck, Chem. Sci. 8 (2017) 2914-2922;
      (d) C. Le, P. Menzies, D. Petrone, M. Lautens, Angew. Chem. Int. Ed. 54 (2015) 254-257.

    18. [18]

      Z. Liu, M. Zhang, X. Wang, J. Am. Chem. Soc. 142 (2020) 581-588.  doi: 10.1021/jacs.9b11909

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    3. [3]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

    4. [4]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    5. [5]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    6. [6]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    7. [7]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    10. [10]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    11. [11]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    12. [12]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    13. [13]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    14. [14]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    15. [15]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    16. [16]

      Jindian DuanXiaojuan DingPui Ying ChoyBinyan XuLuchao LiHong QinZheng FangFuk Yee KwongKai Guo . Oxidative spirolactonisation for modular access of γ-spirolactones via a radical tandem annulation pathway. Chinese Chemical Letters, 2024, 35(10): 109565-. doi: 10.1016/j.cclet.2024.109565

    17. [17]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    20. [20]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

Metrics
  • PDF Downloads(9)
  • Abstract views(613)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return