Supported catalysts for simultaneous removal of SO2, NOx, and Hg0 from industrial exhaust gases: A review
-
* Corresponding authors.
E-mail addresses: wangfei.516@163.com (F. Wang), likaikmust@163.com (K. Li).
Citation:
Ke Zhao, Xin Sun, Chi Wang, Xin Song, Fei Wang, Kai Li, Ping Ning. Supported catalysts for simultaneous removal of SO2, NOx, and Hg0 from industrial exhaust gases: A review[J]. Chinese Chemical Letters,
;2021, 32(10): 2963-2974.
doi:
10.1016/j.cclet.2021.03.023
J.P. Zheng, China Statistical Yearbook, China Statistics Press, Beijing, 2004.
C.F. You, X.C. Xu, Energy 35(2010) 4467-4472.
doi: 10.1016/j.energy.2009.04.019
J.K. Xie, Z. Qu, N.Q. Yan, et al., J. Hazard. Mater. 261(2013) 206-213.
doi: 10.1016/j.jhazmat.2013.07.027
Y. Zhuang, J.S. Thompson, C.J. Zygarlicke, J.H. Pavlish, Environ. Sci. Technol. 38(2004) 5803-5808.
doi: 10.1021/es030683t
C.L. Senior, J.J. Helble, A.F. Sarofim, FuelProcess. Technol. 65-66(2000)263-288.
F. Scala, H.L. Clack, J. Hazard. Mater. 152(2008) 616-623.
doi: 10.1016/j.jhazmat.2007.07.024
K. Krishna, M. Makkee, Appl. Catal. B 59(2005) 35-44.
doi: 10.1016/j.apcatb.2005.01.003
Z.B. Wu, B.Q. Jiang, Y. Liu, Appl. Catal. B 79(2008) 347-355.
doi: 10.1016/j.apcatb.2007.09.039
V.K. Sharma, M. Sohn, G.A.K. Anquandah, N. Nesnas, Chemosphere 87(2012) 644-648.
doi: 10.1016/j.chemosphere.2012.01.019
H.Q. Yang, Z.H. Xu, M.H. Fan, A.E. Bland, R.R. Judkins, J. Hazard. Mater. 146(2007) 1-11.
doi: 10.1016/j.jhazmat.2007.04.113
M. Rallo, M.A. Lopez-Anton, M.L. Contreras, M.M. Maroto-Valer, Environ. Sci. Pollut. Res. 19(2012) 1084-1096.
doi: 10.1007/s11356-011-0658-2
A.P. Jones, J.W. Hoffmann, D.N. Smith, T.J. Feeley, J.T. Murphy, Environ. Sci. Technol. 41(2007) 1365-1371.
doi: 10.1021/es0617340
J.Y. Zhang, C.T. Li, L.K. Zhao, et al., Chem. Eng. J. 313(2017) 1535-1547.
doi: 10.1016/j.cej.2016.11.039
J.R. Ma, Z.Y. Liu, Q.Y. Liu, et al., Fuel Process. Technol. 89(2008) 242-248.
doi: 10.1016/j.fuproc.2007.11.003
Q.Y. Liu, Z.Y. Liu, Fuel 108(2013) 149-158.
doi: 10.1016/j.fuel.2011.05.015
Y. Yuan, J.Y. Zhang, H.L. Li, et al., Chem. Eng. J. 192(2012) 21-28.
doi: 10.1016/j.cej.2012.03.043
C.Y. Su, X. Ran, J.L. Hu, C.L. Shao, Environ. Sci. Technol. 47(2013) 11562-11568.
doi: 10.1021/es4025595
N.D. Hutson, R. Krzyzynska, R.K. Srivastava, Ind. Eng. Chem. Res. 47(2008) 5825-5831.
doi: 10.1021/ie800339p
F. Ping, C.P. Cen, Z.X. Tang, et al., Chen, Chem. Eng. J. 168(2011) 52-59.
doi: 10.1016/j.cej.2010.12.030
P. Fang, C.P. Cen, X.M. Wang, et al., Fuel Process. Technol. 106(2013) 645-653.
doi: 10.1016/j.fuproc.2012.09.060
J. Jeong, J. Jurng, Chemosphere 68(2007) 2007-2010.
doi: 10.1016/j.chemosphere.2007.01.044
Y. Qi, H.M. Yang, K.S. Zeng, Z.W. Zhang, Y. Gang, J. Environ. Sci. 11(2007) 1393-1397.
J.Y. Zhang, C.T. Li, L.K. Zhao, et al., Chem. Eng. J. 313(2017) 1535-1547.
doi: 10.1016/j.cej.2016.11.039
B.X. Shen, H.Q. Ma, Y. Yao, J. Environ. Sci. 024(2012) 499-506.
doi: 10.1016/S1001-0742(11)60756-0
Y.Y. Wang, B.X. Shen, C. He, S.J. Yue, F.M. Wang, Environ. Sci. Technol. 49(2015) 9355-9363.
doi: 10.1021/acs.est.5b01435
Z. Li, Y.S. Shen, X.H. Li, S.M. Zhu, M. Hu, Catal. Commun. 82(2016) 55-60.
doi: 10.1016/j.catcom.2016.04.019
Y.J. Yang, J. Liu, B. Zhang, et al., Chem. Eng. J. 317(2017) 758-765.
doi: 10.1016/j.cej.2017.02.060
X. Zhang, B.X. Shen, F. Shen, et al., Chem. Eng. J. 326(2017) 551-560.
doi: 10.1016/j.cej.2017.05.128
E.J. Granite, M.C. Freeman, R.A. Hargis, J.O.D. William, H.W. Pennline, J. Environ. Manage. 84(2007) 628-634.
doi: 10.1016/j.jenvman.2006.06.022
R. Thiruvenkatachari, S. Vigneswaran, I.S. Moon, Korean J. Chem. Eng. 25(2008) 64-72.
doi: 10.1007/s11814-008-0011-8
J.S. Chang, K. Urashima, Y.X. Tong, et al., J. Electrost. 57(2003) 313-323.
doi: 10.1016/S0304-3886(02)00168-7
Y. Byun, K.B. Ko, M. Cho, et al., Chemosphere 72(2008) 652-658.
doi: 10.1016/j.chemosphere.2008.02.021
H.B. Ma, P. Chen, M.L. Zhang, X.Y. Lin, R. Ruan, Plasma Chem. Plasma. Process. 22(2002) 239-254.
doi: 10.1023/A:1014895409454
W.C. Wang, Z.B. Zhao, L. Feng, W. Su, J. Electrost. 63(2005) 155-164.
doi: 10.1016/j.elstat.2004.10.002
S. Ma, Y. Zhao, J. Yang, et al., Renew. Sust. Energ. Rev. 67(2017) 791-810.
doi: 10.1016/j.rser.2016.09.066
H. Wang, B. Yuan, R.L. Hao, Y. Zhao, X.P. Wang, Chem. Eng. J. 378(2019) 122155.
doi: 10.1016/j.cej.2019.122155
A.S. Negreira, J. Wilcox, J. Phys. Chem. C 117(2013) 24397-24406.
doi: 10.1021/jp407794g
G.M. Zeng, L.K. Zhao, Y.E. Xie, et al., Catal. Sci. Technol. 5(2015) 3459-3472.
doi: 10.1039/C5CY00219B
H.L. Li, C.Y. Wu, Y. Li, J.Y. Zhang, Environ. Sci. Technol. 45(2011) 7394-7400.
doi: 10.1021/es2007808
D. Jampaiah, K.M. Tur, P. Venkataswamy, et al., RSC Adv. 5(2015) 30331-30341.
doi: 10.1039/C4RA16787B
M.A.T. Izquierdo, B. Rubio, C. Mayoral, J.M. Andrés, Fuel 82(2003) 147-151.
doi: 10.1016/S0016-2361(02)00249-1
X.P. Fan, C.T. Li, G.M. Zeng, et al., Energy Fuels 24(2010) 4250-4254.
doi: 10.1021/ef100377f
K. Jastrzab, Fuel Process. Technol. 104(2012) 371-377.
doi: 10.1016/j.fuproc.2012.06.011
C. Zhu, Y.F. Duan, C.Y. Wu, et al., Fuel 172(2016) 160-169.
doi: 10.1016/j.fuel.2015.12.061
L. Yue, Y.J. Wang, H.Q. Wang, Z.B. Wu, Catal. Commun. 12(2011) 0-1294.
L.K. Zhao, C.T. Li, J. Zhang, et al., Fuel 153(2015) 361-369.
doi: 10.1016/j.fuel.2015.03.001
D.H. Wang, Q. Yao, S. Liu, S.E. Hui, Y.N. Niu, J. Energy Inst. 92(2018) 1852-1863.
C.H. Chiu, T.H. Kuo, T.C. Chang, et al., Int. J. Coal Geol. 170(2016) 60-68.
K.H. Liu, M.Y. Chen, Y.C. Tsai, H.P. Lin, H.C. Hsi, Catal. Today 297(2017) 104-112.
doi: 10.1016/j.cattod.2017.03.037
J. Wang, T. Yu, X. Wang, et al., Appl. Catal. B 127(2012) 137-147.
doi: 10.1016/j.apcatb.2012.08.016
C.H. Chiu, H.C. Hsi, C.C. Lin, Fuel Process. Technol. 126(2014) 138-144.
doi: 10.1016/j.fuproc.2014.04.031
C.K. Pang, Y.Q. Zhuo, Q.Y. Weng, RSC Adv. 7(2017) 32146-32154.
doi: 10.1039/C7RA05165D
T.T. Cao, Z.J. Zhou, Q. Chen, et al., Fuel Process. Technol. 160(2017) 158-169.
doi: 10.1016/j.fuproc.2017.02.022
X. Zhang, Q.Q. Shi, B.X. Shen, Z.Z. Hu, X.Q. Zhang, J. Hazard. Mater. 381(2020) 121003.
doi: 10.1016/j.jhazmat.2019.121003
H.J. Chae, I.S. Nam, S.W. Ham, S.B. Hong, Appl. Catal. B 53(2004) 117-126.
doi: 10.1016/j.apcatb.2004.04.018
Z.J. Song, B. Wang, W. Yang, et al., Chem. Eng. J. 386(2020) 123883.
doi: 10.1016/j.cej.2019.123883
H.R. Sun, D.X. Li, RSC Adv. 10(2020) 25155-25164.
doi: 10.1039/D0RA04392C
L. Shi, Y.F. Chang, L.B. Qin, et al., New J. Chem. 43(2019) 17486-17493.
doi: 10.1039/C9NJ03697K
J.M. Stencel, A.M. Rubel, Coal Sci. Technol. 24(1995) 1791-1794.
K. Tsuji, I. Shiraishi, Fuel 76(1997) 555-560.
doi: 10.1016/S0016-2361(97)00022-7
H.H. Tseng, M.Y. Wey, Y.S. Liang, K.H. Chen, Carbon 41(2003) 1079-1085.
doi: 10.1016/S0008-6223(03)00017-4
Y.J. Song, T. Wang, Y. Zhao, et al., J. Fuel Chem. Tech. 044(2016) 1112-1118.
S. Sumathi, S. Bhatia, K.T. Lee, A.R. Mohamed, J. Hazard. Mater. 176(2010) 1093-1096.
doi: 10.1016/j.jhazmat.2009.11.037
X. Sun, L.N. Sun, Y. Liu, et al., J. Energy Inst. 93(2020) 87-98.
doi: 10.1016/j.joei.2019.04.006
H.W. Zhang, M.Z. Zhang, L.F. Hao, et al., Fuel Process. Technol. 201(2020) 106342.
doi: 10.1016/j.fuproc.2020.106342
Y. Li, X. Zhang, F.L. Huang, et al., Fuel 275(2020) 117862.
doi: 10.1016/j.fuel.2020.117862
B. Zhao, H.H. Yi, X.L. Tang, et al., J. Hazard. Mater. 364(2019) 700-709.
doi: 10.1016/j.jhazmat.2018.04.001
Y. Zhu, Y. Hou, J. Wang, et al., Environ. Sci. Technol. 53(2019) 5521-5527.
doi: 10.1021/acs.est.8b07122
L. Gao, C.T. Li, J. Zhang, et al., Chem. Eng. J. 342(2018) 339-349.
doi: 10.1016/j.cej.2018.02.100
C. Guillard, B. Beaugiraud, C. Dutriez, et al., Appl. Catal. B 39(2002) 331-342.
doi: 10.1016/S0926-3373(02)00120-0
L.J. Alemany, L. Lietti, N. Ferlazzo, et al., J. Catal. 155(1995) 117-130.
doi: 10.1006/jcat.1995.1193
H. Wang, B. Wang, J. Zhou, et al., J. Environ. Manage. 239(2019) 17-22.
doi: 10.1016/j.jenvman.2019.02.118
J. Meng, Y. Duan, P. Hu, et al., Energy Fuels 33(2019) 8896-8906.
doi: 10.1021/acs.energyfuels.9b01503
Y. Yang, W.Q. Xu, J. Wang, T.Y. Zhu, Fuel 249(2019) 178-187.
doi: 10.1016/j.fuel.2019.03.103
Y. Wang, H.U. Li, S.K. Wang, et al., Fuel Process. Technol. 188(2019) 179-189.
doi: 10.1016/j.fuproc.2019.02.009
H.Q. Wang, S. Cao, Z. Fang, et al., Appl. Surf. Sci. 330(2015) 245-252.
doi: 10.1016/j.apsusc.2014.12.163
X.B. Chen, P.L. Wang, P. Fang, et al., Fuel Process. Technol. 167(2017) 221-228.
doi: 10.1016/j.fuproc.2017.07.018
L.J. Liu, S. Su, K. Xu, et al., Proc. Combust. Inst. 38(2021) 5331-5338.
doi: 10.1016/j.proci.2020.06.295
C. Li, D. Brewe, J.Y. Lee, Appl. Catal. B 270(2020) 118854.
doi: 10.1016/j.apcatb.2020.118854
J. Liu, R.T. Guo, X. Sun, et al., Mater. Chem. Phys. 232(2019) 88-98.
doi: 10.1016/j.matchemphys.2019.04.061
B. Yang, Z. Li, Q. Huang, et al., Chem. Eng. J. 360(2018) 990-1002.
M.Z. Zhang, J. Wang, Y.H. Zhang, et al., Fuel 276(2020) 118018.
doi: 10.1016/j.fuel.2020.118018
P. Zhang, W.G. Pan, R.T. Guo, et al., J. Energy Inst. 92(2019) 1313-1328.
doi: 10.1016/j.joei.2018.10.003
J. Liu, R.T. Guo, Z.Z. Guan, et al., Int. J. Hydrogen Energy 44(2019) 835-843.
doi: 10.1016/j.ijhydene.2018.11.006
H. Yue, P. Lu, W. Su, et al., Environ. Sci. Pollut. Res. 26(2019) 13602-13618.
doi: 10.1007/s11356-019-04822-x
C.H. Chiu, H.C. Hsi, H.P. Lin, Catal. Today 245(2015) 2-9.
doi: 10.1016/j.cattod.2014.09.008
C.H. Chiu, H.C. Hsi, H.P. Lin, T.C. Chang, J. Hazard. Mater. 291(2015) 1-8.
doi: 10.1016/j.jhazmat.2015.02.076
S. Gu, K. Gui, D. Ren, Y. Wei, React. Kinet. Mech. Catal. 132(2021) 187-201.
doi: 10.1007/s11144-020-01890-w
Y. Li, C.Y. Wu, Environ. Sci. Technol. 40(2006) 6444-6448.
doi: 10.1021/es061228a
M.Y. Chen, Y.C. Tsai, C.F. Tseng, H.P. Lin, H.C. Hsi, Aerosol Air Qual. Res. 19(2019) 2557-2567.
doi: 10.4209/aaqr.2019.09.0468
C.J. Lin, C.L. Chang, C.F. Tseng, H.P. Lin, H.C. Hsi, Aerosol Air Qual. Res. 19(2019) 1421-1438.
doi: 10.4209/aaqr.2018.10.0389
B. Yuan, Y. Zhao, X.Z. Mao, Z.H. Zheng, R.L. Hao, Fuel 262(2020) 116567.
doi: 10.1016/j.fuel.2019.116567
X.P. Fan, C.T. Li, G.M. Zeng, et al., Fuel Process. Technol. 104(2012) 325-331.
doi: 10.1016/j.fuproc.2012.06.003
D.W. Fickel, E. D'Addio, J.A. Lauterbach, R.F. Lobo, Appl. Catal. B 102(2011) 441-448.
doi: 10.1016/j.apcatb.2010.12.022
L. Wang, W. Li, G.S. Qi, D. Weng, J. Catal. 289(2012) 21-29.
doi: 10.1016/j.jcat.2012.01.012
B. Liu, S. Jie, B. Li, Prog. In. Chem. 25(2013) 36-45.
W. Peng, H.M. Zhao, S. Hong, et al., RSC Adv. 4(2014) 48912-48919.
doi: 10.1039/C4RA07028C
Y. Peng, K.Z. Li, J.H. Li, Appl. Catal. B 140-141(2013) 483-492.
doi: 10.1016/j.apcatb.2013.04.043
U.S.F. Arrozi, H.W. Wijaya, A. Patah, Y. Permana, Appl. Catal. A: Gen. 506(2015) 77-84.
doi: 10.1016/j.apcata.2015.08.028
R.T. Yang, J.P. Chen, E.S. Kikkinides, L.S. Cheng, J.E. Cichanowicz, Ind. Eng. Chem. Res. 31(1992) 1440-1445.
doi: 10.1021/ie00006a003
Kunio Ohtsuka, Chem. Mat. 9(1997) 2039-2050.
doi: 10.1021/cm9605227
A. Vaccari, Catal. Today 41(1998) 53-71.
doi: 10.1016/S0920-5861(98)00038-8
S. Cheng, Catal. Today 49(1999) 303-312.
doi: 10.1016/S0920-5861(98)00437-4
B.X. Shen, Y. Yan, H.Q. Ma, T. Liu, Chin. J. Catal. 32(2011) 1803-1811.
doi: 10.1016/S1872-2067(10)60269-0
C. He, B.X. Shen, J.H. Chen, J. Cai, Environ. Sci. Technol. 48(2014) 7891-7898.
doi: 10.1021/es5007719
H.L. Li, S.K. Wu, L.Q. Li, et al., Catal. Sci. Technol. 5(2015) 5129-5138.
doi: 10.1039/C5CY00794A
G.L. Chi, B.X. Shen, R.R. Yu, C. He, X. Zhang, J. Hazard. Mater. 330(2017) 83-92.
doi: 10.1016/j.jhazmat.2017.02.013
H.L. Li, Y. Wang, S.K. Wang, X. Wang, J.J. Hu, Fuel 208(2017) 576-586.
doi: 10.1016/j.fuel.2017.07.061
X. Yao, K. Ma, W. Zou, et al., Chin. J. Catal. 38(2017) 146-159.
doi: 10.1016/S1872-2067(16)62572-X
J. Lei, M.S. Pavani, G.S. Panagiotis, W.T. Stephen, G.P. Neville, Energy Fuels 22(2008) 2299-2306.
doi: 10.1021/ef700533q
S.B. Zhang, Y.C. Zhao, J.P. Yang, J.Y. Zhang, C.G. Zheng, Chem. Eng. J. 348(2018) 618-629.
doi: 10.1016/j.cej.2018.05.037
L. Gao, C. Li, S. Li, et al., Chem. Eng. J. 371(2019) 781-795.
doi: 10.1016/j.cej.2019.04.104
L.K. Zhao, C.T. Li, X.Y. Du, et al., Appl. Surf. Sci. 437(2018) 390-399.
doi: 10.1016/j.apsusc.2017.08.165
A. Bueno-López, K. Krishna, M. Makkee, J.A. Moulijn, J. Catal. 230(2005) 237-248.
doi: 10.1016/j.jcat.2004.11.027
L.K. Zhao, C.T. Li, Y. Wang, et al., Catal. Sci. Technol. 6(2016) 6076-6086.
doi: 10.1039/C5CY01576F
B.X. Shen, S.W. Zhu, X. Zhang, et al., Fuel 224(2018) 241-249.
doi: 10.1016/j.fuel.2018.03.080
P.Y. Wang, S. Su, J. Xiang, et al., Chem. Eng. J. 225(2013) 68-75.
doi: 10.1016/j.cej.2013.03.060
M. Rallo, B. Heidel, K. Brechtel, M.M. Maroto-Valer, Chem. Eng. J. 198-199(2012) 87-94.
doi: 10.1016/j.cej.2012.05.080
H.L. Li, Y.C. Wu, Y. Li, J.Y. Zhang, Appl. Catal. B 111(2012) 381-388.
P. Zhang, W.G. Pan, R.T. Guo, et al., J. Energy Inst. 92(2018) 1313-1328.
B.X. Shen, T. Liu, Z. Ning, X.Y. Yang, L.D. Deng, J. Environ. Sci. 22(2010) 1447-1454.
doi: 10.1016/S1001-0742(09)60274-6
Z. Ye, J. Laumb, R. Liggett, M. Holmes, J. Pavlish, Fuel Process. Technol. 88(2007) 929-934.
doi: 10.1016/j.fuproc.2007.03.010
A.A. Presto, E.J. Granite, Environ. Sci. Technol. 40(2006) 5601-5609.
doi: 10.1021/es060504i
H.Y. Pan, R.G. Minet, S.W. Benson, T.T. Tsotsis, Ind. Eng. Chem. Res. 33(1994) 2996-3003.
doi: 10.1021/ie00036a014
H.L. Li, C.Y. Wu, Y. Li, et al., J. Hazard. Mater. 243(2012) 117-123.
doi: 10.1016/j.jhazmat.2012.10.007
D.Y. Chen, S.J. Zhao, Z. Qu, N.Q. Yan, Fuel 217(2018) 297-305.
doi: 10.1016/j.fuel.2017.12.086
J.P. Chen, M.A. Buzanowski, R.T. Yang, J.E. Cichanowicz, J. Air Waste Manage. Assoc. 40(1990) 1403-1409.
doi: 10.1080/10473289.1990.10466793
L. Lisi, G. Lasorella, S. Malloggi, G. Russo, Appl. Catal. B 50(2004) 251-258.
doi: 10.1016/j.apcatb.2004.01.007
W.C. Jin, I.S. Nam, Appl. Catal. A: Gen. 312(2006) 165-174.
doi: 10.1016/j.apcata.2006.06.044
F. Wang, B. Shen, L. Gao, J. Yang, Fuel Process. Technol. 168(2017) 131-139.
doi: 10.1016/j.fuproc.2017.08.024
R.B. Jin, Y. Liu, Z.B. Wu, H.Q. Wang, T.T. Gu, Catal. Today 153(2010) 84-89.
doi: 10.1016/j.cattod.2010.01.039
D.W. Kwon, K.H. Park, S.C. Hong, Chem. Eng. J. 284(2016) 315-324.
doi: 10.1016/j.cej.2015.08.152
H.L. Li, C.Y. Wu, Y. Li, et al., Chem. Eng. J. 219(2013) 319-326.
doi: 10.1016/j.cej.2012.12.100
M.S. Maqbool, A.K. Pullur, H.P. Ha, Appl. Catal. B 152(2014) 28-37.
W.J. Zhang, G.F. Liu, J. Jiang, et al., Chemosphere 243(2020)125419.
doi: 10.1016/j.chemosphere.2019.125419
Y.L. Wang, Z.G. Huang, Z.Y. Liu, Q.Y. Liu, Carbon 42(2004) 445-448.
doi: 10.1016/j.carbon.2003.11.006
L.L. Dennis, D.B. Thomas, R.N. Babu, Fuel Process. Technol. 65-66(2000) 157-165.
doi: 10.1016/S0378-3820(99)00083-1
A.N. Glenn, H. Q. Yang, C.B. Robert, et al., Fuel 82(2003) 107-116.
doi: 10.1016/S0016-2361(02)00254-5
L. Jing, W.Q. Qu, W.J. Sang, C.G. Zheng, Chem. Eng. J. 184(2012) 163-167.
doi: 10.1016/j.cej.2012.01.023
S.S. Tao, C.T. Li, X.P. Fan, et al., Chem. Eng. J. 210(2012) 547-556.
doi: 10.1016/j.cej.2012.09.028
Y. Li, P.D. Murphy, C.Y. Wu, K.W. Powers, J.C.J. Bonzongo, Environ. Sci. Technol. 42(2008) 5304-5309.
doi: 10.1021/es8000272
Y.N. Shi, S. Chen, H. Sun, Y. Shu, X. Quan, Catal. Commun. 42(2013) 10-13.
doi: 10.1016/j.catcom.2013.07.036
Y.C. Zhu, Y.Q. Hou, J.W. Wang, et al., Environ. Sci. Technol. 53(2019) 5521-5527.
doi: 10.1021/acs.est.8b07122
L. Gao, C.T. Li, P. Lu, et al., Fuel 215(2018) 30-39.
doi: 10.1016/j.fuel.2017.11.008
Peng Zhang , Yitao Yang , Tian Qin , Xueqiu Wu , Yuechang Wei , Jing Xiong , Xi Liu , Yu Wang , Zhen Zhao , Jinqing Jiao , Liwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152