Citation: Changwei Chen, Hongyu Zhang, Gang Xu, Sunliang Cui. Oxoarylation of ynamides with N-aryl hydroxamic acids[J]. Chinese Chemical Letters, ;2021, 32(8): 2551-2554. doi: 10.1016/j.cclet.2021.02.054 shu

Oxoarylation of ynamides with N-aryl hydroxamic acids

    *Corresponding author.
    E-mail address: xugang_1030@zju.edu.cn(G. Xu).
  • Received Date: 30 November 2020
    Revised Date: 19 February 2021
    Accepted Date: 22 February 2021
    Available Online: 26 February 2021

Figures(5)

  • Ynamides are electron-rich alkynes with unique reactivities and act as flexible building blocks in organic synthesis. Therefore, the investigation for transformation of ynamides with exceptional selectivity and efficiency is attractive and interesting. Herein, we report an oxoarylation of ynamides with N-aryl hydroxamic acids. In the presence of catalytic Cu(OTf)2, both the terminal and internal ynamides could undergo an addition/[3,3] sigmatropic rearrangement cascade with N-aryl hydroxamic acids to achieve oxoarylation, along with providing selective entry to (ortho-amino)arylacetamides and oxindoles. Moreover, deuterium-labelling reaction and gram-scale reaction were conducted to probe the mechanism and showcase the scalability.
  • 加载中
    1. [1]

      (a) C.A. Zificsak, J.A. Mulder, R.P. Hsung, C. Rameshkumar, L.L. Wei, Tetrahedron 57 (2001) 7575-7606;
      (b) X.N. Wang, H.S. Yeom, L.C. Fang, et al., Acc. Chem. Res. 47 (2014) 560-578;
      (c) F. Pan, C. Shu, L.W. Ye, Org. Biomol. Chem. 14 (2016) 9456-9465;
      (d) G. Evano, N. Blanchard, G. Compain, et al., Chem. Lett. 45 (2016) 574-585.

    2. [2]

      (a) R. Pirwerdjan, P. Becker, C. Bolm, Org. Lett. 18 (2016) 3307-3309;
      (b) F.L. Hong, Z.S. Wang, D.D. Wei, et al., J. Am. Chem. Soc. 141 (2019) 16961-16970;
      (c) Y. Xu, Q. Sun, T.D. Tan, et al., Angew. Chem. Int. Ed. 58 (2019) 16252-16259;
      (d) Z. Zeng, H. Jin, M. Rudolph, et al., Angew. Chem. Int. Ed. 57 (2018) 16549-16553;
      (e) Q. Zhao, D.F.L. Rayo, D. Campeau, et al., Angew. Chem. Int. Ed. 57 (2018) 13603-13607;
      (f) Y. Wang, L.J. Song, X. Zhang, J. Sun, Angew. Chem. Int. Ed. 55 (2016) 9704-9708;
      (g) S.N. Karad, R.S. Liu, Angew. Chem. Int. Ed. 53 (2014) 9072-9076;
      (h) C. Theunissen, B. Métayer, N. Henry, et al., J. Am. Chem. Soc. 136 (2014) 12528-12531;
      (i) M. Lecomte, G. Evano, Angew. Chem. Int. Ed. 55 (2016) 4547-4551;
      (j) D.V. Patil, S.W. Kim, Q.H. Nguyen, et al., Angew. Chem. Int. Ed. 56 (2017) 3670-3674;
      (k) P. Thilmany, G. Evano, Angew. Chem. Int. Ed. 59 (2020) 242-246;
      (l) X. Zeng, J. Li, C.K. Ng, et al., Angew. Chem. Int. Ed. 57 (2018) 2924-2928.

    3. [3]

      (a) D. Vasu, H.H. Hung, S. Bhunia, et al., Angew. Chem. Int. Ed. 50 (2011) 6911-6914;
      (b) L. Li, B. Zhou, Y.H. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 8245-8249.

    4. [4]

      (a) S. Xu, J. Liu, D. Hu, X. Bi, Green Chem. 17 (2015) 184-187;
      (b) D.L. Smith, W.R.F. Goundry, H.W. Lam, Chem. Commun. 48 (2012) 1505-1507;
      (c) H. Liu, Y. Yang, J. Wu, et al., Chem. Commun. 52 (2016) 6801-6804.

    5. [5]

      (a) L. Hu, S. Xu, Z. Zhao, et al., J. Am. Chem. Soc. 138 (2016) 13135-13138;
      (b) M. Yang, X. Wang, J. Zhao, ACS Catal. 10 (2020) 5230-5235.

    6. [6]

      (a) B. Zhou, L. Li, X.Q. Zhu, et al., Angew. Chem. Int. Ed. 56 (2017) 4015-4019;
      (b) B. Zhou, Y.Q. Zhang, K. Zhang, et al., Nat. Commun. 10 (2019) 3234-3244.

    7. [7]

      B.S. Bhunia, C.J. Chang, R.S. Liu, Org. Lett. 14(2012) 5522-5525.

    8. [8]

      A. Mukherjee, R.B. Dateer, R. Chaudhuri, et al., J. Am. Chem. Soc. 133(2011) 15372-15375.  doi: 10.1021/ja208150d

    9. [9]

      (a) M.J. Miller, Chem. Rev. 89 (1989) 1563-1579;
      (b) J.B. Neilands, J. Biol. Chem. 270 (1995) 26723-26726;
      (c) R.C. Hider, X. Kong, Nat. Prod. Rep. 27 (2010) 637-657.

    10. [10]

      (a) E. Nuti, D. Cuffaro, E. Bernardini, et al., J. Med. Chem. 61 (2018) 4421-4435;
      (b) C. Rouanet-Mehouas, B. Czarny, F. Beau, et al., J. Med. Chem. 60 (2017) 403-414.

    11. [11]

      (a) H.Y. Wang, L.L. Anderson, Org. Lett. 15 (2013) 3362-3365;
      (b) J. Wen, A. Wu, P. Chen, et al., Tetrahedron Lett. 56 (2015) 5282-5286.

    12. [12]

      (a) C. Beshara, A. Hall, R. Jenkins, et al., Org. Lett. 7 (2005) 5729-5732;
      (b) A. Porzelle, M. Woodrow, N. Tomkinson, Eur. J. Org. Chem. 2008 (2008) 5135-5143;
      (c) A. Porzelle, M. Woodrow, N. Tomkinson, Org. Lett. 12 (2010) 812-815;
      (d) A. Porzelle, M. Woodrow, N. Tomkinson, Org. Lett. 12 (2010) 1492-1495.

    13. [13]

      S. Shaaban, V. Tona, B. Peng, N. Maulide, Angew. Chem. Int. Ed. 56(2017) 10938-10941.  doi: 10.1002/ange.201703667

    14. [14]

      (a) B. Huang, L. Zeng, Y. Shen, S. Cui, Angew. Chem. Int. Ed. 56 (2017) 4565-4568;
      (b) Y. Shen, B. Huang, L. Zeng, S. Cui, Org. Lett. 19 (2017) 4616-4619;
      (c) R. Chen, Y. Liu, S. Cui, Chem. Commun. 54 (2018) 11753-11756;
      (d) L. Zeng, H. Sajiki, S. Cui, Org. Lett. 21 (2019) 6423-6426;
      (e) C. Chen, S. Cui, J. Org. Chem. 84 (2019) 12157-12164;
      (f) L. Zeng, Z. Lai, C. Zhang, et al., Org. Lett. 22 (2020) 2220-2224;
      (g) R. Chen, L. Zeng, B. Huang, et al., Org. Lett. 20 (2018) 3377-3380;
      (h) Y. Shen, C. Wang, W. Chen, et al., Org. Chem. Front. 5 (2018) 3574-3578.

    15. [15]

      (a) A.B. Dounay, L.E. Overman, Chem. Rev. 103 (2003) 2945-2964;
      (b) J.J. Badillo, N.V. Hanhan, A.K. Franz, Curr. Opin. Drug Disc. 13 (2010) 758-776;
      (c) R. Dalpozzo, G. Bartoli, G. Bencivenni, Chem. Soc. Rev. 41 (2012) 7247-7290;
      (d) P. Fu, F. Kong, X. Li, et al., Org. Lett. 16 (2014) 3708-3711;
      (e) J. Zhang, Z. Qian, X. Wu, et al., Org. Lett. 16 (2014) 2752-2755.

    16. [16]

      (a) M. Chen, X. Wang, P. Yang, et al., Angew. Chem. Int. Ed. 59 (2020) 12199-12205;
      (b) W. Kong, Q. Wang, J. Zhu, J. Am. Chem. Soc. 137 (2015) 16028-16031;
      (c) L. Yin, M. Kanai, M. Shibasaki, Angew. Chem. Int. Ed. 50 (2011) 7620-7623;
      (d) J. Wang, Y. Yuan, R. Xiong, et al., Org. Lett. 14 (2012) 2210-2213;
      (e) M. Ratushnyy, N. Kvasovs, S. Sarkar, et al., Angew. Chem. Int. Ed. 59 (2020) 10316-10320;
      (f) P. Fan, Y. Lan, C. Zhang, et al., J. Am. Chem. Soc. 142 (2020) 2180-2186;
      (g) X. Bai, C. Wu, S. Ge, Y. Lu, Angew. Chem. Int. Ed. 59 (2020) 2764-2768;
      (h) J. Zhu, L. Huang, W. Dong, et al., Angew. Chem. Int. Ed. 58 (2019) 16119-16123;
      (i) Z.J. Zhang, L. Zhang, R.L. Geng, et al., Angew. Chem. Int. Ed. 58 (2019) 12190-12194.

  • 加载中
    1. [1]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    2. [2]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    3. [3]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    4. [4]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    5. [5]

      Ruru LiQian LiuHui LiFengbin SunZhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679

    6. [6]

      Huashan HuangJingze ChenLuyun ZhangHong YanSiqi LiFen-Er Chen . Oscillatory flow reactor facilitates fast photochemical Wolff rearrangement toward synthesis of α-substituted amides in flow. Chinese Chemical Letters, 2025, 36(2): 109992-. doi: 10.1016/j.cclet.2024.109992

    7. [7]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    8. [8]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    9. [9]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    10. [10]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    13. [13]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    14. [14]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    17. [17]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    18. [18]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    19. [19]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    20. [20]

      Xinyue LanJunguang LiangChuran WenXiaolong QuanHuimin LinQinqin XuPeixian ChenGuangyu YaoDan ZhouMeng Yu . Photo-manipulated polyunsaturated fatty acid-doped liposomal hydrogel for flexible photoimmunotherapy. Chinese Chemical Letters, 2024, 35(4): 108616-. doi: 10.1016/j.cclet.2023.108616

Metrics
  • PDF Downloads(4)
  • Abstract views(402)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return