Citation: Xiangwei Ren, Hongli Wu, Mei Zhang, Wentao Zhao, Genping Huang. Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study[J]. Chinese Chemical Letters, ;2021, 32(9): 2769-2772. doi: 10.1016/j.cclet.2021.02.049 shu

Origins of catalyst-controlled enantiodivergent hydroamination of enones with pyridazinones: A computational study

    * Corresponding authors.
    E-mail addresses: wentao_zhao@tju.edu.cn (W. Zhao), gphuang@tju.edu.cn (G. Huang).
    1 These authors contributed equally to this work.
  • Received Date: 15 January 2021
    Revised Date: 22 February 2021
    Accepted Date: 23 February 2021
    Available Online: 25 February 2021

Figures(4)

  • Density functional theory calculations have been performed to investigate the dipeptide phosphine-catalyzed hydroamination of enones with pyridazinones. The computations reveal that a number of the NH···O hydrogen-bonding interactions with the pyridazinone moiety and the C-H···O hydrogen-bonding interactions with the enone moiety are present in the enantioselectivity-determining Michael addition transition states. The experimentally-observed catalyst-controlled enantiodivergence is mainly attributed to the significant impact of the substituent of the amide moiety of the dipeptide phosphine on the relative strength of the NH···O hydrogen-bonding interactions, which was found to affect the Si face attack transition state, enabling the enantioselectivity switch upon change of chiral dipeptide phosphine catalyst.
  • 加载中
    1. [1]

      (a) S. Mukherjee, J.W. Yang, S. Hoffmann, B. List, Chem. Rev. 107 (2007) 5471-5569;
      (b) Y. Qin, L. Zhu, S. Luo, Chem. Rev. 117 (2017) 9433-9520;
      (c) L. Dai, S. Ye, Chin. Chem. Lett. 32 (2021) 660-667;
      (d) E.Z. Lin, Y. Xu, K. Ji, L.W. Ye, Chin. Chem. Lett. 32 (2021) 954-962;
      (e) W. Cao, X. Liu, X. Feng, Chin. Chem. Lett. 29 (2018) 1201-1208.

    2. [2]

      (a) Y.C. Fan, O. Kwon, Chem. Commun. 49 (2013) 11588-11619;
      (b) B.J. Cowen, S.J. Miller, Chem. Soc. Rev. 38 (2009) 3102-3116;
      (c) H. Guo, Y.C. Fan, Z. Sun, Y. Wu, O. Kwon, Chem. Rev. 118 (2018) 10049-10293;
      (d) H. Ni, W.L. Chan, Y. Lu, Chem. Rev. 118 (2018) 9344-9411.

    3. [3]

      (a) X. Han, W.L. Chan, W. Yao, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 55 (2016) 6492-6496;
      (b) Y. Gu, P. Hu, C. Ni, X. Tong, J. Am. Chem. Soc. 137 (2015) 6400-6406;
      (c) B. Huang, C. Li, H. Wang, et al., Org. Lett. 19 (2017) 5102-5105;
      (d) W. Zhou, H. Wang, M. Tao, et al., Chem. Sci. 8 (2017) 4660-4665;
      (e) W. Yao, Z. Yu, S. Wen, et al., Chem. Sci. 8 (2017) 5196-5200;
      (f) H. Ni, Z. Yu, W. Yao, et al., Chem. Sci. 8 (2017) 5699-5704;
      (g) J. Zhang, H.H. Wu, J. Zhang, Org. Lett. 19 (2017) 6080-6083;
      (h) L. Zhang, H. Liu, G. Qiao, et al., J. Am. Chem. Soc. 137 (2015) 4316-4319;
      (i) H. Wang, L. Zhang, Y. Tu, et al., Angew. Chem. Int. Ed. 57 (2018) 15787-15791.

    4. [4]

      B.M. Trost, C.J. Li, J. Am. Chem. Soc. 116(1994) 3167-3168.  doi: 10.1021/ja00086a074

    5. [5]

      C. Zhang, X. Lu, J. Org. Chem. 60 (1995) 2906-2908.  doi: 10.1021/jo00114a048

    6. [6]

      (a) C.E. Henry, Q. Xu, Y.C. Fan, et al., J. Am. Chem. Soc. 136 (2014) 11890-11893;
      (b) Z. Wang, T. Wang, W. Yao, Y. Lu, Org. Lett. 19 (2017) 4126-4129;
      (c) T. Wang, Z. Yu, D.L. Hoon, et al., Chem. Sci. 6 (2015) 4912-4922;
      (d) A.J. Smaligo, S. Vardhineedi, O. Kwon, ACS Catal. 8 (2018) 5188-5192;
      (e) E. Li, H. Jin, P. Jia, X. Dong, Y. Huang, Angew. Chem. Int. Ed. 55 (2016) 11591-11594.

    7. [7]

      H. Wang, X. Li, Y. Tu, J. Zhang, iScience 23(2020) 101138.  doi: 10.1016/j.isci.2020.101138

    8. [8]

      (a) H. Li, X. Hong, Chin. Chem. Lett. 29 (2018) 1585-1590;
      (b) P.H.Y. Cheong, C.Y. Legault, J.M. Um, N. Çelebi-Ölçüm, K.N. Houk, Chem. Rev. 111 (2011) 5042-5137;
      (c) C.X. Cui, C. Shan, Y.P. Zhang, et al., Chem. Asian J. 13 (2018) 1076-1088.

    9. [9]

      (a) Y. Xia, Y. Liang, Y. Chen, et al., J. Am. Chem. Soc. 129 (2007) 3470-3471;
      (b) H. Chen, L. Zhu, K. Zhong, et al., Chin. Chem. Lett. 29 (2018) 1237-1241;
      (c) Y. Wang, Y. Lan, Chin. Chem. Lett. 31 (2020) 736-738;
      (d) Y. Wang, M. Tang, Y. Wang, D. Wei, J. Org. Chem. 81 (2016) 5370-5380;
      (e) T. Liu, S. Han, Y. Li, S. Bi, J. Org. Chem. 81 (2016) 9775-9784;
      (f) Z. Yu, Z. Jin, M. Duan, et al., J. Org. Chem. 83 (2018) 9729-9740;
      (g) B. Bhaskararao, G. Jindal, R.B. Sunoj, J. Org. Chem. 82 (2017) 13449-13458;
      (h) G. Huang, C. Diner, K.J. Szabó, F. Himo, Org. Lett. 19 (2017) 5904-5907.

    10. [10]

      (a) F.M. Bickelhaupt, K.N. Houk, Angew. Chem. Int. Ed. 56 (2017) 10070-10086;
      (b) D.H. Ess, K.N. Houk, J. Am. Chem. Soc. 129 (2007) 10646-10647;
      (c) X. Hong, Y. Liang, K.N. Houk, J. Am. Chem. Soc. 136 (2014) 2017-2025;
      (e) S. Liu, Y. Lei, X. Qi, Y. Lan, J. Phys. Chem. A 118 (2014) 2638-2645;
      (f) G. Huang, M. Kalek, R.Z. Liao, F. Himo, Chem. Sci. 6 (2015) 1735-1746;
      (g) X. Zhang, H. Zou, G. Huang, ChemCatChem 8 (2016) 2549-2556;
      (h) J. Yu, S. Zhang, X. Hong, J. Am. Chem. Soc. 139 (2017) 7224-7243;
      (i) H. Wu, X. Li, X. Tang, C. Feng, G. Huang, J. Org. Chem. 83 (2018) 9220-9923;
      (j) H. Zou, Z.L. Wang, Y. Cao, G. Huang, Chin. Chem. Lett. 29 (2018) 1355-1358.

  • 加载中
    1. [1]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    2. [2]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    3. [3]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    4. [4]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    5. [5]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    6. [6]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    10. [10]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Junyi YuYin ChengAnhong CaiXianfeng HuangQingrui Zhang . Synthetic Cu(Ⅲ) from copper plating wastewater for onsite decomplexation of Cu(Ⅱ)- and Ni(Ⅱ)-organic complexes. Chinese Chemical Letters, 2025, 36(2): 110549-. doi: 10.1016/j.cclet.2024.110549

    13. [13]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    14. [14]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    18. [18]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    19. [19]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    20. [20]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

Metrics
  • PDF Downloads(6)
  • Abstract views(530)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return