Citation: Zhonghua Qu, Pu Wang, Xing Chen, Guo-Jun Deng, Huawen Huang. Visible-light-driven Cadogan reaction[J]. Chinese Chemical Letters, ;2021, 32(8): 2582-2586. doi: 10.1016/j.cclet.2021.02.047 shu

Visible-light-driven Cadogan reaction

    * Corresponding author.
    E-mail address: hwhuang@xtu.edu.cn (H. Huang).
  • Received Date: 3 January 2021
    Revised Date: 21 February 2021
    Accepted Date: 22 February 2021
    Available Online: 25 February 2021

Figures(7)

  • Visible-light-driven photochemical Cadogan-type cyclization has been discovered. The organic D-A type photosensitizer 4CzIPN found to be an efficient mediator to transfer energy from photons to the transient intermediate that breaks the barriers of deoxygenation in Cadogan reaction and enables a mild metal-free access to carbazoles and related heterocycles. DFT calculation results indicate mildly endergonic formation of the intermediate complex of nitrobiarenes and PPh3, which corresponds with experimental findings regarding reaction temperature. The robust synthetic capacity of the photoredox Cadogan reaction systems has been demonstrated by the viable productivity of a broad range of carbazoles and related N-heterocycles with good tolerance of various functionalities.
  • 加载中
    1. [1]

      (a) A.W. Schmidt, K.R. Reddy, H.J. Knolker, Chem. Rev. 112 (2012) 3193–3328;
      (b) T. Janosik, A. Rannug, U. Rannug, et al., Chem. Rev. 118 (2018) 9058–9128.

    2. [2]

      (a) D. Gendron, M. Leclerc, Energy Environ. Sci. 4 (2011) 1225–1237;
      (b) Y. Ooyama, S. Inoue, T. Nagano, et al., Angew. Chem. Int. Ed. 50 (2011) 7429-7433;
      (c) Z. He, C. Zhang, X. Xu, et al., Adv. Mater. 23 (2011) 3086–3089;
      (d) M.S. Gong, J.R. Cha, C.W. Lee, Org. Electron. 42 (2017) 66–74.

    3. [3]

      (a) G.R. Humphrey, J.T. Kuethe, Chem. Rev. 106 (2006) 2875–2911;
      (b) D.F. Taber, P.K. Tirunahari, Tetrahedron 67 (2011) 7195–7210;
      (c) J. Roy, A.K. Jana, D. Mal, Tetrahedron 68 (2012) 6099–6121;
      (d) W.C.P. Tsang, R.H. Munday, G. Brasche, et al., J. Org. Chem. 73 (2008) 7603–7610;
      (e) S.H. Cho, J. Yoon, S. Chang, J. Am. Chem. Soc. 133 (2011) 5996–6005;
      (f) H. Gao, Q.L. Xu, M. Yousufuddin, et al., Angew. Chem. Int. Ed. 53 (2014) 2701–2705;
      (g) J.Y. Chen, C.T. Zhong, Q.W. Gui, et al., Chin. Chem. Lett. 32 (2021) 475–479.

    4. [4]

      B.P. Mundy, M.G. Ellerd, J.G. Frank Favaloro, Name Reactions and Reagents in Organic Synthesis, 2nd Ed., John Wiley & Sons, Inc., 2005.

    5. [5]

      (a) A. Kaga, S. Chiba, ACS Catal. 7 (2017) 4697–4706;
      (b) J.K. Matsui, S.B. Lang, D.R. Heitz, et al., ACS Catal. 7 (2017) 2563–2575;
      (c) H. Yi, G. Zhang, H. Wang, et al., Chem. Rev. 117 (2017) 9016–9085.

    6. [6]

      (a) P. Muller, C. Fruit, Chem. Rev. 103 (2003) 2905–2919;
      (b) M.P. Doyle, R. Duffy, M. Ratnikov, et al., Chem. Rev. 110 (2010) 704–724;
      (c) D. Huang, G. Yan, Adv. Synth. Catal. 359 (2017) 1600–1619;
      (d) C. Wentrup, Chem. Rev. 117 (2017) 4562–4623.

    7. [7]

      (a) P. Gandeepan, T. Muller, D. Zell, et al., Chem. Rev. 119 (2019) 2192–2452;
      (b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 117 (2017) 9247–9301;
      (c) J. Jiao, K. Murakami, K. Itami, ACS Catal. 6 (2015) 610–633.

    8. [8]

      (a) R.J. Sundberg, L.S. Lin, D.E. Blackburn, J. Heterocycl. Chem. 6 (1969) 441;
      (b) R.J. Sundberg, H.F. Russell, W.V. Ligon, et al., J. Org. Chem. 38 (1972) 719–724.

    9. [9]

      (a) P.J. Bunyan, J.I.G. Cadogan, J. Chem. Soc. (1963) 42–49;
      (b) J.I.G. Cadogan, M. Cameron-Wood, R.K. Mackie, et al., J. Chem. Soc. (1965) 4831–4837;
      (c) J.I.G. Cadogan, Q. Rev., Chem. Soc. 22 (1968) 222–251;
      (d) R. Sanz, J. Escribano, M.R. Pedrosa, et al., Adv. Synth. Catal. 349 (2007) 713–718;
      (e) F. Martínez-Lara, A. Suárez, S. Suárez-Pantiga, et al., Org. Chem. Front. 7 (2020) 1869–1877.

    10. [10]

      A.W. Freeman, M. Urvoy, M.E. Criswell, J. Org. Chem. 70 (2005) 5014–5019.  doi: 10.1021/jo0503299

    11. [11]

      (a) N.E. Genung, L. Wei, G.E. Aspnes, Org. Lett. 16 (2014) 3114–3117;
      (b) F. Zhou, D.S. Wang, T.G. Driver, Adv. Synth. Catal. 357 (2015) 3463–3468;
      (c) M. Shevlin, X. Guan, T.G. Driver, ACS Catal. 7 (2017) 5518–5522;
      (d) H. Song, Z. Yang, C.H. Tung, W. Wang, ACS Catal. 10 (2020) 276–281.

    12. [12]

      (a) T.V. Nykaza, T.S. Harrison, A. Ghosh, et al., J. Am. Chem. Soc. 139 (2017) 6839–6842;
      (b) T.V. Nykaza, A. Ramirez, T.S. Harrison, et al., J. Am. Chem. Soc. 140 (2018) 3103–3113;
      (c) G. Li, T.V. Nykaza, J.C. Cooper, et al., J. Am. Chem. Soc. 142 (2020) 6786–6799.

    13. [13]

      (a) T. Bach, J.P. Hehn, Angew. Chem. Int. Ed. 50 (2011) 1000–1045;
      (b) D.M. Schultz, T.P. Yoon, Science 343 (2014) 1239176;
      (c) J. Xuan, W.J. Xiao, Angew. Chem. Int. Ed. 51 (2012) 6828–6838;
      (d) T.P. Yoon, M.A. Ischay, J. Du, Nat. Chem. 2 (2010) 527–532;
      (e) C.K. Prier, D.A. Rankic, D.W. MacMillan, Chem. Rev. 113 (2013) 5322–5363;
      (f) W.B. He, L.Q. Gao, X.J. Chen, et al., Chin. Chem. Lett. 31 (2020) 1895–1898;
      (g) W. Yang, B. Li, M. Zhang, et al., Chin. Chem. Lett. 31 (2020) 1313–1316;
      (h) S. He, X. Chen, F. Zeng, et al., Chin. Chem. Lett. 31 (2020) 1863–1867;
      (i) G.H. Li, Q.Q. Han, Y.Y. Sun, et al., Chin. Chem. Lett. 31 (2020) 3255–3258;
      (j) X. Mi, Y. Kong, J. Zhang, et al., Chin. Chem. Lett. 30 (2019) 2295–2298;
      (k) C. Wang, X. Huang, X. Liu, et al., Chin. Chem. Lett. 31 (2020) 677–680;
      (l) L. Wang, M. Zhang, Y. Zhang, et al., Chin. Chem. Lett. 31 (2020) 67–70;
      (m) W. Xiao, J. Wu, Chin. Chem. Lett. 31 (2020) 3083–3094.

    14. [14]

      (a) A.C. Hernandez-Perez, S.K. Collins, Angew. Chem. Int. Ed. 52 (2013) 12696–12700;
      (b) S. Choi, T. Chatterjee, W.J. Choi, et al., ACS Catal. 5 (2015) 4796–4802;
      (c) A.C. Hernandez-Perez, A. Caron, S.K. Collins, Chem. Eur. J. 21 (2015) 16673–16678;
      (d) S. Parisien-Collette, A.C. Hernandez-Perez, S.K. Collins, Org. Lett. 18 (2016) 4994–4997;
      (e) T. Chatterjee, G.B. Roh, M.A. Shoaib, et al., Org. Lett. 19 (2017) 1906–1909;
      (f) J. Shen, N. Li, Y. Yu, et al., Org. Lett. 21 (2019) 7179–7183.

    15. [15]

      (a) X.D. Xia, J. Xuan, Q. Wang, et al., Adv. Synth. Catal. 356 (2014) 2807–2812;
      (b) S. Parisien-Collette, C. Cruché, X. Abel-Snape, et al., Green Chem. 19 (2017) 4798–4803;
      (c) L. Yang, Y. Zhang, X. Zou, et al., Green Chem. 20 (2018) 1362–1366.

    16. [16]

      (a) C. Lu, Z. Su, D. Jing, et al., Org. Lett. 21 (2019) 1438–1443;
      (b) S. Peng, Y. Lin, W. He, Chin. J. Org. Chem. 40 (2020) 541;
      (c) Z. Wang, Q. Liu, X. Ji, et al., ACS Catal. 10 (2020) 154–159;
      (d) W. Ou, R. Zou, M. Han, et al., Chin. Chem. Lett. 31 (2020) 1899–1902;
      (e) H. Huang, K. Deng, G.J. Deng, Green Chem. 22 (2020) 8243–8247;
      (f) X. Ji, Q. Liu, Z. Wang, et al., Green Chem. 22 (2020) 8233–8237.

    17. [17]

      (a) E. Arceo, I.D. Jurberg, A. Alvarez-Fernandez, et al., Nat. Chem. 5 (2013) 750–756;
      (b) S.R. Kandukuri, A. Bahamonde, I. Chatterjee, et al., Angew. Chem. Int. Ed. 54 (2015) 1485–1489;
      (c) L. Wozniak, J.J. Murphy, P. Melchiorre, J. Am. Chem. Soc. 137 (2015) 5678–5681;
      (d) A. Fawcett, J. Pradeilles, Y. Wang, et al., Science 357 (2017) 283–286;
      (e) J. Wu, L. He, A. Noble, et al., J. Am. Chem. Soc. 140 (2018) 10700–10704.

    18. [18]

      G. Pandey, D. Pooranch, U.T. Bhalerao, Tetrahedron 47 (1991) 1745–1752.  doi: 10.1016/S0040-4020(01)96916-9

    19. [19]

      J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.  doi: 10.1021/acscatal.5b02204

  • 加载中
    1. [1]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    2. [2]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    3. [3]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    4. [4]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    5. [5]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    6. [6]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    9. [9]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    10. [10]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    11. [11]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    12. [12]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    13. [13]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    14. [14]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    15. [15]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    18. [18]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    19. [19]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    20. [20]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

Metrics
  • PDF Downloads(16)
  • Abstract views(763)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return