Citation: Wenxin Hou, Shuhui Wang, Xiuru Bi, Xu Meng, Peiqing Zhao, Xiang Liu. Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants[J]. Chinese Chemical Letters, ;2021, 32(8): 2513-2518. doi: 10.1016/j.cclet.2021.01.023 shu

Compared catalytic properties of OMS-2-based nanocomposites for the degradation of organic pollutants

    * Corresponding author at: College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Analysis and Testing Center, China Three Gorges University, Yichang 443002, China.
    **Corresponding author.
    E-mail addresses: xumeng@licp.cas.cn(X. Meng), xiangliu@ctgu.edu.cn (X. Liu).
    1 These authors contributed equally to this work.
  • Received Date: 25 October 2020
    Revised Date: 8 December 2020
    Accepted Date: 12 January 2021
    Available Online: 27 January 2021

Figures(4)

  • In this study, Mn catalysts have been designed based on manganese oxide octahedral molecular sieve (OMS-2) supports to optimize the catalytic activity in the degradation of organic pollutants. Herein, two different synthetic strategies: Pre-incorporation vs. wet-impregnation have been employed to synthesize [PW]-OMS-2 and [PW]/OMS-2. For [PW]-OMS-2, energy dispersive X-ray spectroscopy (EDX) confirmed that dispersed granular phosphotungstic acid attached and located at the surface of OMS-2, meanwhile some W atoms have been doped into frameworks of OMS-2. However, for [PW]/OMS-2, the W atoms cannot enter the OMS-2 frameworks. A correlation has been established between the different synthetic strategies and catalytic activities. The [PW]-OMS-2 is the most highly effective and stable over than [PW]/OMS-2 and OMS-2 itself for the organic pollutants removal. This may be caused not only by the synergetic effect of [PW] and OMS-2, but also by doping W into frameworks of OMS-2. Therefore, this work provides a new environmentally-friendly and heterogeneous PMS activator and it may be put into practice to degrade organic pollutants.
  • 加载中
    1. [1]

      (a) F. Lu, D. Astruc, Coord. Chem. Rev. 356 (2018) 147–164;
      (b) F. Lu, D. Astruc, Coord. Chem. Rev. 408 (2020) 213180;
      (c) E. Forgacs, T. Cserháti, G. Oros, Environ. Int. 30 (2004) 953–971;
      (d) X. Sun, D. Xu, P. Dai, et al., Chem. Eng. J. 402 (2020) 125881;
      (e) P. Duan, Y. Qi, S. Feng, et al., Appl. Catal. B: Environ. 267 (2020) 118717;
      (f) E. Saputra, S. Muhammad, H. Sun, et al., Appl. Catal. B: Environ. 142-143 (2013) 729–735;
      (g) S. Sun, H. Ding, L. Mei, Chen, et al., Chem. Lett. 31 (2020) 2287–2294;
      (h) D. Yuan, M. Sun, S. Tang, et al., Chin. Chem. Lett. 31 (2020) 547–550;
      (i) X. Lei, M. You, F. Pan, et al., Chem. Lett. 30 (2019) 2216–2220;
      (j) J. Peng, Y. He, C. Zhou, S. Su, B. Lai, Chin. Chem. Lett. 32 (2021) 1626–1636;
      (k) X. Yan, D. Yue, C. Guo, et al., Chin. Chem. Lett. 31 (2020) 1535–1539;
      (l) J. Li, Y. Li, Z. Xiong, G. Yao, B. Lai, Chin. Chem. Lett. 30 (2019) 2139–2146;
      (m) G. Elmaci, A.S. Ertürk, M. Sevim, Ö. Metin, Int. J. Hydrogen Energy 44 (2019) 17995.

    2. [2]

      (a) M. Solís, A. Solís, H.I. Pérez, N. Manjarrez, M. Flores, Process Biochem. 47 (2012) 1723–1748;
      (b) Z.H. Huang, Z.Y. Jia, Y.Y. Zhao, et al., Chem. Eng. J. 400 (2020) 125863;
      (c) J. Lei, B. Chen, L. Zhou, et al., Chem. Eng. J. 400 (2020) 125902;
      (d) B. Wu, S. Deng, H. Wang, G. Gu, Y. Wang, Chem. Eng. J. 401 (2020) 126105;
      (e) H. Sun, F. Guo, J. Pan, et al., Chem. Eng. J. 406 (2020) 126844;
      (f) A. Wang, Z. Zheng, H. Wang, et al., Appl. Catal. B: Environ. 277 (2020) 119171.

    3. [3]

      (a) L. Pan, W. Shi, T. Sen, L. Wang, J. Zhang, Appl. Catal. B: Environ. 280 (2021) 119414;
      (b) J. Wang, B. Xiong, L. Miao, et al., Appl. Catal. B: Environ. 280 (2021) 119422;
      (c) Y. Gao, Q. Zhao, Y. Li, et al., Chem. Eng. J. 405 (2021) 126719;
      (d) Y. Yu, Y. Ji, J. Lu, X. Yin, Q. Zhou, Chem. Eng. J. 406 (2021) 126759;
      (e) R. Deng, Q. He, D. Yang, et al., Chem. Eng. J. 406 (2021) 126884;
      (f) S. Xin, G. Liu, X. Ma, et al., Appl. Catal. B: Environ. 280 (2021) 119386;
      (g) X. He, B. Sun, M. He, et al., Appl. Catal. B: Environ. 277 (2020) 119219;
      (h) J.C.E. Yang, Y. Lin, H.H. Peng, et al., Appl. Catal. B: Environ. 268 (2020) 118549;
      (i) J. Yang, D. Zeng, Q. Zhang, et al., Appl. Catal. B: Environ. 279 (2020) 119363;
      (j) Z. Wang, H. Jia, T. Zheng, et al., Appl. Catal. B: Environ. 272 (2020) 119030;
      (k) S. Shu, P. Wang, W. Zhang, et al., Chin. Chem. Lett. 31 (2020) 2762–2768;
      (l) Y. Peng, M. Cui, Z. Zhang, et al., ACS Catal. 9 (2019) 10803–10811;
      (m) G. Jiang, X. Li, Y. Shen, et al., J. Catal. 391 (2020) 414–423.

    4. [4]

      (a) A. Roy, S. Chakraborty, S.P. Kundu, B. Adhikari, S.B. Majumder, Ind. Eng. Chem. Res. 51 (2012) 12095–12106;
      (b) Y. Jia, L. Ding, P. Ren, et al., J. Chem. Eng. Data 65 (2020) 725–736;
      (c) C.Y. Teh, P.M. Budiman, K.P.Y. Shak, T.Y. Wu, Ind. Eng. Chem. Res. 55 (2016) 4363–4389;
      (d) J. Liu, J. Xiong, C. Tian, et al., Chem. Eng. J. 338 (2018) 719–725;
      (e) L.I. Doumic, P.A. Soares, M.A. Ayude, et al., Chem. Eng. J. 277 (2015) 86–96;
      (f) R. Mei, Q. Wei, C. Zhu, et al., Appl. Catal. B: Environ. 245 (2019) 420–427;
      (g) A.A. Oladipo, A.O. Ifebajo, M. Gazi, Appl. Catal. B: Environ. 243 (2019) 243– 252.

    5. [5]

      (a) X. Liu, Y. Huang, P. Zhao, X. Meng, D. Astruc, ChemCatChem 12 (2020) 175– 180;
      (b) J. Huang, H. Zhang, Environ. Int. 133 (2019) 105141.

    6. [6]

      H. Liang, H. Sun, A. Patel, et al., Appl. Catal. B: Environ. 127 (2012) 330–335.  doi: 10.1016/j.apcatb.2012.09.001

    7. [7]

      S. Luo, L. Duan, B. Sun, et al., Appl. Catal. B: Environ. 164 (2015) 92–99.  doi: 10.1016/j.apcatb.2014.09.008

    8. [8]

      (a) I.B. Alcover, S. Daviero-Minaud, R. David, et al., Inorg. Chem. 54 (2015) 8733–8743;
      (b) M. Li, J. Zhang, J. Han, et al., Inorg. Chem. 56 (2017) 241–251;
      (c) M. Zhou, L. Cai, M. Bajdich, et al., ACS Catal. 5 (2015) 4485–4491;
      (d) C. Calvert, R. Joesten, K. Ngala, et al., Chem. Mater. 20 (2008) 6382–6388.

    9. [9]

      (a) X.F. Shen, Y.S. Ding, J. Liu, et al., J. Am. Chem. Soc. 127 (2005) 6166–6167;
      (b) S.L. Suib, J. Mater. Struct. Chem. 18 (2008) 1623–1631;
      (c) M. Sun, L. Yu, F. Ye, et al., Chem. Eng. J. 220 (2013) 320–327;
      (d) X. Xiao, S.P. Sun, M. McBride, A. Lemley, Environ. Sci. Pollut. Res. 20 (2013) 10–21;
      (e) X.S. Liu, Z.N. Jin, J.Q. Lu, X.X. Wang, M.F. Luo, Chem. Eng. J. 162 (2010) 151– 157;
      (f) C.K. Kingondu, N. Opembe, C.H. Chen, et al., Adv. Funct. Mater. 21 (2011) 312–323;
      (g) T. Uematsu, Y. Miyamoto, Y. Ogasawara, et al., Catal. Sci. Technol. 6 (2016) 222–233;
      (h) L. Zhang, J. Tu, L. Lyu, C. Hu, Appl. Catal. B: Environ. 181 (2016) 561–569.

    10. [10]

      (a) D.W. Kwon, K.B. Nam, S.C. Hong, Appl. Catal. A Gen. 497 (2015) 160–166;
      (b) Z. Liu, H. Su, B. Chen, J. Li, S.I. Woo, Chem. Eng. J. 299 (2016) 255–262.

    11. [11]

      J. Ma, J. Wang, Y. Dang, Chem. Eng. J. 388 (2020) 124387.  doi: 10.1016/j.cej.2020.124387

    12. [12]

      F. Liu, R. Cao, S. Rong, P. Zhang, Mater Desig. 149 (2018) 165–172.  doi: 10.1016/j.matdes.2018.04.014

    13. [13]

      Y. Yang, J. Jia, Y. Liu, P. Zhang, Appl. Catal. A: Gen. 562 (2018) 132–141.  doi: 10.1016/j.apcata.2018.06.006

    14. [14]

      X. Bi, T. Tang, X. Meng, et al., Catal. Sci. Technol. 10 (2020) 360–371.  doi: 10.1039/C9CY01968E

    15. [15]

      (a) Y. Huang, Y. Wang, X. Meng, X. Liu, Inorg. Chem. Commun. 112 (2020) 107757;
      (b) Y. Huang, K. Zheng, X. Liu, X. Meng, D. Astruc, Inorg. Chem. Front. 7 (2020) 939–945;
      (c) Y. Huang, J. Yan, N. Zhang, et al., Catal. Lett. 150 (2020) 2021–2026;
      (d) Y. Huang, Y. Wu, Y. Wang, X. Meng, X. Liu, ChemistrySelect 5 (2020) 3272– 3277;
      (e) W. Hou, Y. Huang, X. Liu, Catal. Lett. 150 (2020) 3017–3022;
      (f) S. Wang, Y. Huang, X. Meng, X. Liu, Inorg. Chem. Commun. 112 (2020) 107969;
      (h) L. Tao, X. Bi, L. Zhang, et al., Appl. Catal. A: Gen. 605 (2020) 117813.

    16. [16]

      J.F. Keggin, Proc. R. Soc. Lond. A 144 (1934) 75–100.

    17. [17]

      (a) S. Zhu, X. Li, J. Kang, X. Duan, S. Wang, Environ. Sci. Technol. 53 (2019) 307– 315;
      (b) H. Kim, W. Kim, Y. Mackeyev, et al., Environ. Sci. Technol. 46 (2012) 9606– 9613.

    18. [18]

      L. Kong, G. Fang, X. Xia, et al., Chem. Eng. J. 403 (2021) 126445.

  • 加载中
    1. [1]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    2. [2]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    3. [3]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    4. [4]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    5. [5]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    6. [6]

      Menglu GuoYing-Qi SongJunfei ChengGuoqiang DongXun SunChunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392

    7. [7]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    8. [8]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    9. [9]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    10. [10]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    11. [11]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    12. [12]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    13. [13]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    14. [14]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

Metrics
  • PDF Downloads(2)
  • Abstract views(522)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return