Citation: Yong Wang, Xinyi Cao, Jingfei Ji, Xiuling Cui, Chao Pi, Leyao Zhao, Yangjie Wu. Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes[J]. Chinese Chemical Letters, ;2021, 32(5): 1696-1700. doi: 10.1016/j.cclet.2020.12.026 shu

Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes

    * Corresponding authors.
    E-mail addresses: cuixl@zzu.edu.cn (X. Cui), wyj@zzu.edu.cn (Y. Wu).
  • Received Date: 29 September 2020
    Revised Date: 14 December 2020
    Accepted Date: 16 December 2020
    Available Online: 20 December 2020

Figures(5)

  • A green tandem reaction, including insertion/aerobic oxidation/bisindolylation, starting from indoles and diazo compounds has been developed. The combination of water and fluorinated alcohol plays dual roles as solvent and promoter in this chemical transformation. Molecular oxygen in the air acts as an oxidant. 3, 3'-Bis(indolyl)methanes with quaternary carbon were produced under metal-free conditions. No any catalyst and additive were required. N2 and water were released as sole by-products. Absence of water and fluorinated alcohol resulted in Wolff rearrangement product.
  • 加载中
    1. [1]

      (a) T.R. Garbe, M. Kobayashi, N. Shimizu, et al., J. Nat. Prod. 63 (2000) 596-598;
      (b) M. Kobayashi, S. Aoki, K. Gato, et al., Chem. Pharm. Bull. 42 (1994) 2449-2451;
      (c) R. Veluri, I. Oka, I. Wagner-Döbler, H. Laatsch, J. Nat. Prod. 66 (2003) 1520-1523;
      (d) R. Bell, S. Carmeli, N. Sar, J. Nat. Prod. 57 (1994) 1587-1590.

    2. [2]

      (a) C. Hong, G.L. Firestone, L.F. Bjeldanes, Biochem. Pharmacol. 63 (2002) 1085-1097;
      (b) T. Irie, K. Kubushiro, K. Suzuki, et al., Anticancer Res. 19 (1999) 3061-3066;
      (c) H.T. Le, C.M. Schaldach, G.L. Firestone, L.F. Bjeldanes, J. Biol. Chem. 278 (2003) 21136-21145;
      (d) A. Kamal, Y.V.V. Srikanth, M.N.A. Khan, T.B. Shaik, M. Ashraf, Bioorg. Med. Chem. Lett. 20 (2010) 5229-5231;
      (e) B.V. Subba Reddy, N. Rajeswari, M. Sarangapani, et al., Bioorg. Med. Chem. Lett. 22 (2012) 2460-2463;
      (f) M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Chem. Rev. 110 (2010) 2250-2293.

    3. [3]

      (a) G. Gao, Y. Han, Z.H. Zhang, ChemistrySelect 2 (2017) 11561-11564;
      (b) J. Xiao, H. Wen, L. Wang, et al., Green Chem. 18 (2016) 1032-1037.

    4. [4]

      (a) K. Fuji, Chem. Rev. 93 (1993) 2037-2066;
      (b) I. Denissova, L. Barriault, Tetrahedron 59 (2003) 10105-10146;
      (c) K.W. Quasdorf, L.E. Overman, Nature 516 (2014) 181-191;
      (d) R. Long, J. Huang, J. Gong, Z. Yang, Nat. Prod. Rep. 32 (2015) 1584-1601;
      (e) X.P. Zeng, Z.Y. Cao, Y.H. Wang, F. Zhou, J. Zhou, Chem. Rev. 116 (2016) 7330-7396;
      (f) J. Feng, M. Holmes, M.J. Krische, Chem. Rev. 117 (2017) 12564-12580;
      (g) Y. Li, S. Xu, Chem. Eur. J. 24 (2018) 16218-16245;
      (h) C. Li, S.S. Ragab, G. Liu, W. Tang, Nat. Prod. Rep. 37 (2020) 276-292.

    5. [5]

      (a) M. Delgado-Rebollo, A. Prieto, P.J. Pérez, ChemCatChem 6 (2014) 2047-2052;
      (b) M.B. Johansen, M.A. Kerr, Org. Lett. 12 (2010) 4956-4959;
      (c) A. DeAngelis, V.W. Shurtleff, O. Dmitrenko, J.M. Fox, J. Am. Chem. Soc. 133 (2011) 1650-1653;
      (d) X. Gao, B. Wu, W.X. Huang, M.W. Chen, Y.G. Zhou, Angew. Chem. Int. Ed. 54 (2015) 11956-11960;
      (e) V. Arredondo, S.C. Hiew, E.S. Gutman, I.D.U.A. Premachandra, D.L. Van Vranken, Angew. Chem. Int. Ed. 56 (2017) 4156-4159.

    6. [6]

      Z. Du, Y. Xing, P. Lu, Y. Wang, Org. Lett. 17(2015) 1192-1195.  doi: 10.1021/acs.orglett.5b00089

    7. [7]

      R.R. Singh, R.S. Liu, Chem. Commun. 53(2017) 4593-4596.  doi: 10.1039/C7CC01304C

    8. [8]

      X. Hu, F. Chen, Y. Deng, H. Jiang, W. Zeng, Org. Lett. 20(2018) 6140-6143.  doi: 10.1021/acs.orglett.8b02613

    9. [9]

      (a) C.J. Li, Chem. Rev. 105 (2005) 3095-3166;
      (b) C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68-82;
      (c) A. Chanda, V.V. Fokin, Chem. Rev. 109 (2009) 725-748;
      (d) R.N. Butler, A.G. Coyne, Chem. Rev. 110 (2010) 6302-6337;
      (e) M.B. Gawande, V.D.B. Bonifácio, R. Luque, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42 (2013) 5522-5551.

    10. [10]

      (a) R. Breslow, Acc. Chem. Res. 24 (1991) 159-164;
      (b) R. Breslow, Acc. Chem. Res. 37 (2004) 471-478;
      (c) S. Narayan, J. Muldoon, M.G. Finn, et al., Angew. Chem. Int. Ed. 44 (2005) 3275-3279;
      (d) W. Li, G. Yin, L. Huang, et al., Green Chem. 18 (2016) 4879-4883;
      (e) C. Wu, X. Xin, Z.M. Fu, et al., Green Chem. 19 (2017) 1983-1989;
      (f) S. Peng, Y.X. Song, J.Y. He, et al., Chin. Chem. Lett. 30 (2019) 2287-2290;
      (g) Y. Kim, C.J. Li, Green Synth. Catal. 1 (2020) 1-11.

    11. [11]

      (a) J.P. Bégué, D. Bonnet-Delpon, B. Crousse, Synlett (2004) 18-29;
      (b) I.A. Shuklov, N.V. Dubrovina, A. Börner, Synthesis (2007) 2925-2943;
      (c) I. Colomer, A.E.R. Chamberlain, M.B. Haughey, T.J. Donohoe, Nat. Rev. Chem. 1 (2017) 0088;
      (d) J. Wencel-Delord, F. Colobert, Org. Chem. Front. 3 (2016) 394-400.

    12. [12]

      (a) H.F. Motiwala, R.H. Vekariya, J. Aubé, Org. Lett. 17 (2015) 5484-5487;
      (b) R.H. Vekariya, J. Aubé, Org. Lett. 18 (2016) 3534-3537;
      (c) G.X. Li, J. Qu, Chem. Commun. 46 (2010) 2653-2655;
      (d) M. De Rosa, A. Soriente, Eur. J. Org. Chem. (2010) 1029-1032;
      (e) Z. Sadiq, M. Iqbal, E.A. Hussain, S. Naz, J. Mol. Liq. 255 (2018) 26-42;
      (f) W.C. Shiyao Lu, Qilong Shen, Chin. Chem. Lett. 30 (2019) 2279-2281.

    13. [13]

      M.B. Rubin, R. Gleiter, Chem. Rev. 100(2000) 1121-1164.  doi: 10.1021/cr960079j

    14. [14]

      A. Saba, Synth. Commun. 24(1994) 695-699.  doi: 10.1080/00397919408012648

    15. [15]

      Y. Yu, Q. Sha, H. Cui, K.S. Chandler, M.P. Doyle, Org. Lett. 20(2018) 776-779.  doi: 10.1021/acs.orglett.7b03912

    16. [16]

      (a) R.D.C. Gallo, A.C.B. Burtoloso, Green Chem. 20 (2018) 4547-4556;
      (b) H.H. San, S.J. Wang, M. Jiang, X.Y. Tang, Org. Lett. 20 (2018) 4672-4676.

    17. [17]

      (a) S.F. Zhu, C. Chen, Y. Cai, Q.L. Zhou, Angew. Chem. Int. Ed. 47 (2008) 932-934;
      (b) S.F. Zhu, Y. Cai, H.X. Mao, J.H. Xie, Q.L. Zhou, Nat. Chem. 2 (2010) 546-551.

    18. [18]

      X.J. Lv, Y.H. Chen, Y.K. Liu, Org. Lett. 21(2019) 190-195.  doi: 10.1021/acs.orglett.8b03654

    19. [19]

      B.M. Trost, S. Malhotra, P. Koschker, P. Ellerbrock, J. Am. Chem. Soc. 134(2012) 2075-2084.  doi: 10.1021/ja206995s

    20. [20]

      (a) D. Vuluga, J. Legros, B. Crousse, et al., J. Org. Chem. 76 (2011) 1126-1133;
      (b) S. Khaksar, S.M. Vahdat, M. Gholizadeh, S.M. Talesh, J. Fluorine Chem. 136 (2012) 8-11;
      (c) C. Pi, X. Yin, X. Cui, Y. Ma, Y. Wu, Org. Lett. 21 (2019) 2081-2084.

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    5. [5]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    6. [6]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    7. [7]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    8. [8]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    13. [13]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    16. [16]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    17. [17]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    20. [20]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

Metrics
  • PDF Downloads(7)
  • Abstract views(727)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return